- •Морис Дж. Бах Архитектура операционной системы unix предисловие
- •Глава 1. Общий обзор особенностей системы
- •1.1 История
- •1.2 Структура системы
- •1.3 Обзор с точки зрения пользователя
- •1.3.1 Файловая система
- •1.3.2 Среда выполнения процессов
- •1.3.3 Элементы конструкционных блоков
- •1.4 Функции операционной системы
- •1.5 Предполагаемая аппаратная среда
- •1.5.1 Прерывания и особые ситуации
- •1.5.2 Уровни прерывания процессора
- •1.5.3 Распределение памяти
- •1.6 Выводы
- •Глава 2. Введение в архитектуру ядра операционной системы
- •2.1 Архитектура операционной системы uniх
- •2.2 Введение в основные понятия системы
- •2.2.1 Обзор особенностей подсистемы управления файлами
- •2.2.2 Процессы
- •2.2.2.1 Контекст процесса
- •2.2.2.2 Состояния процесса
- •2.2.2.3 Переходы из состояния в состояние
- •2.2.2.4 «Сон» и пробуждение
- •2.3 Структуры данных ядра
- •2.4 Управление системой
- •2.5 Выводы и обзор последующих глав
- •2.6 Упражнения
- •Глава 3. Буфер сверхоперативной памяти (кеш)
- •3.1 Заголовки буфера
- •3.2 Структура области буферов (буферного пула)
- •3.3 Механизм поиска буфера
- •3.4 Чтение и запись дисковых блоков
- •3.5 Преимущества и неудобства буферного кеша
- •3.6 Выводы
- •3.7 Упражнения
- •Глава 4. Внутреннее представление файлов
- •4.1 Индексы
- •4.1.1 Определение
- •4.1.2 Обращение к индексам
- •4.1.3 Освобождение индексов
- •4.2 Структура файла обычного типа
- •4.3 Каталоги
- •4.4 Превращение составного имени файла (пути поиска) в идентификатор индекса
- •4.5 Суперблок
- •4.6 Назначение индекса новому файлу
- •4.7 Выделение дисковых блоков
- •4.8 Другие типы файлов
- •4.9 Выводы
- •4.10 Упражнения
- •Глава 5. Системные операции для работы с файловой системой
- •5.1 Open
- •5.2 Read
- •5.3 Wriте
- •5.4 Захват файла и записи
- •5.5 Указание места в файле, где будет выполняться ввод-вывод — lseeк
- •5.6 Closе
- •5.7 Создание файла
- •5.8 Создание специальных файлов
- •5.9 Смена текущего и корневого каталога
- •5.10 Cмена владельца и режима доступа к файлу
- •5.11 Stat и fstат
- •5.12 Каналы
- •5.12.1 Системная функция pipе
- •5.12.2 Открытие поименованного канала
- •5.12.3 Чтение из каналов и запись в каналы
- •5.12.4 Закрытие каналов
- •5.12.5 Примеры
- •5.14 Монтирование и демонтирование файловых систем
- •5.14.1 Пересечение точек монтирования в маршрутах поиска имен файлов
- •5.14.2 Демонтирование файловой системы
- •5.15 Linк
- •5.16 Unlinк
- •5.16.1 Целостность файловой системы
- •5.16.2 Поводы для конкуренции
- •5.17 Абстрактные обращения к файловым системам
- •5.18 Сопровождение файловой системы
- •5.19 Выводы
- •5.20 Упражнения
- •Глава 6. Структура процессов
- •6.1 Состояния процесса и переходы между ними
- •6.2 Формат памяти системы
- •6.2.1 Области
- •6.2.2 Страницы и таблицы страниц
- •6.2.3 Размещение ядра
- •6.2.4 Пространство процесса
- •6.3 Контекст процесса
- •6.4 Сохранение контекста процесса
- •6.4.1 Прерывания и особые ситуации
- •6.4.2 Взаимодействие с операционной системой через вызовы системных функций
- •6.4.3 Переключение контекста
- •6.4.4 Сохранение контекста на случай аварийного завершения
- •6.4.5 Копирование данных между адресным пространством системы и адресным пространством задачи
- •6.5 Управление адресным пространством процесса
- •6.5.1 Блокировка области и снятие блокировки
- •6.5.2 Выделение области
- •6.5.3 Присоединение области к процессу
- •6.5.4 Изменение размера области
- •6.5.5 Загрузка области
- •6.5.6 Освобождение области
- •6.5.7 Отсоединение области от процесса
- •6.5.8 Копирование содержимого области
- •6.6 Приостановка выполнения
- •6.6.1 События, вызывающие приостанов выполнения, и их адреса
- •6.6.2 Алгоритмы приостанова и возобновления выполнения
- •6.7 Выводы
- •6.8 Упражнения
- •Глава 7. Управление процессами
- •7.1 Создание процесса
- •7.2 Сигналы
- •7.2.1 Обработка сигналов
- •7.2.2 Группы процессов
- •7.2.3 Посылка сигналов процессами
- •7.3 Завершение выполнения процесса
- •7.4 Ожидание завершения выполнения процесса
- •7.5 Вызов других программ
- •7.6 Код идентификации пользователя процесса
- •7.7 Изменение размера процесса
- •7.8 Командный процессор shell
- •7.9 Загрузка системы и начальный процесс
- •7.10 Выводы
- •7.11 Упражнения
- •Глава 8. Диспетчеризация процессов и ее временные характеристики
- •8.1 Планирование выполнения процессов
- •8.1.1 Алгоритм
- •8.1.2 Параметры диспетчеризации
- •8.1.3 Примеры диспетчеризации процессов
- •8.1.4 Управление приоритетами
- •8.1.5 Планирование на основе справедливого раздела
- •8.1.6 Работа в режиме реального времени
- •8.2 Системные операции, связанные со временем
- •8.3 Таймер
- •8.3.1 Перезапуск часов
- •8.3.2 Внутренние системные тайм-ауты
- •8.3.3 Построение профиля
- •8.3.4 Учет и статистика
- •8.3.5 Поддержание времени в системе
- •8.4 Выводы
- •8.5 Упражнения
- •Глава 9. Алгоритмы управления памятью
- •9.1 Свопинг
- •9.1.1 Управление пространством на устройстве выгрузки
- •9.1.2 Выгрузка процессов
- •9.1.2.1 Выгрузка при выполнении системной функции fork
- •9.1.2.2 Выгрузка с расширением
- •9.1.3 Загрузка (подкачка) процессов
- •9.2 Подкачка по запросу
- •9.2.1 Структуры данных, используемые подсистемой замещения страниц
- •9.2.1.1 Функция fork в системе с замещением страниц
- •9.2.1.2 Функция exec в системе с замещением страниц
- •9.2.2 "Сборщик" страниц
- •9.2.3 Отказы при обращениях к страницам
- •9.2.3.1 Обработка прерываний по отказу из-за недоступности данных
- •9.2.3.2 Обработка прерываний по отказу системы защиты
- •9.2.4 Замещение страниц на менее сложной технической базе
- •9.3 Система смешанного типа со свопингом и подкачкой по запросу
- •9.4 Выводы
- •9.5 Упражнения
- •Глава 10. Подсистема управления вводом-выводом
- •10.1 Взаимодействие драйверов с программной и аппаратной средой
- •10.1.1 Конфигурация системы
- •10.1.2 Системные функции и взаимодействие с драйверами
- •10.1.2.1 Open
- •10.1.2.2 Closе
- •10.1.2.3 Read и Writе
- •10.1.2.4 Стратегический интерфейс
- •10.1.2.5 Ioctl
- •10.1.2.6 Другие функции, имеющие отношение к файловой системе
- •10.1.3 Программы обработки прерываний
- •10.2 Дисковые драйверы
- •10.3 Терминальные драйверы
- •10.3.1 Символьные списки
- •10.3.2 Терминальный драйвер в каноническом режиме
- •10.3.3 Терминальный драйвер в режиме без обработки символов
- •10.3.4 Опрос терминала
- •10.3.5 Назначение операторского терминала
- •10.3.6 Драйвер косвенного терминала
- •10.3.7 Вход в систему
- •10.4 Потоки
- •10.4.1 Более детальное рассмотрение потоков
- •10.4.2 Анализ потоков
- •10.5 Выводы
- •10.6 Упражнения
- •Глава 11. Взаимодействие процессов
- •11.1 Трассировка процессов
- •11.2 Взаимодействие процессов в версии V системы
- •11.2.1 Сообщения
- •11.2.2 Разделение памяти
- •11.2.3 Семафоры
- •11.2.4 Общие замечания
- •11.3 Взаимодействие в сети
- •11.4 Гнезда
- •11.5 Выводы
- •11.6 Упражнения
- •Глава 12. Многопроцессорные системы
- •12.1 Проблемы, связанные с многопроцессорными системами
- •12.2 Главный и подчиненный процессоры
- •12.3 Семафоры
- •12.3.1 Определение семафоров
- •12.3.2 Реализация семафоров
- •12.3.3 Примеры алгоритмов
- •12.3.3.1 Выделение буфера
- •12.3.3.2 Wait
- •12.3.3.3 Драйверы
- •12.3.3.4 Фиктивные процессы
- •12.4 Система tunis
- •12.5 Узкие места в функционировании многопроцессорных систем
- •12.6 Упражнения
- •Глава 13. Распределенные системы
- •13.1 Периферийные процессоры
- •13.2 Связь типа newcastlе
- •13.3 "Прозрачные" распределенные файловые системы
- •13.4 Распределенная модель без передаточных процессов
- •13.5 Выводы
- •13.6 Упражнения
- •Приложение системные операции
- •Библиография
7.8 Командный процессор shell
Теперь у нас есть достаточно материала, чтобы перейти к объяснению принципов работы командного процессора shell. Сам командный процессор намного сложнее, чем то, что мы о нем здесь будем излагать, однако взаимодействие процессов мы уже можем рассмотреть на примере реальной программы. На Рисунке 7.28 приведен фрагмент основного цикла программы shell, демонстрирующий асинхронное выполнение процессов, переназначение вывода и использование каналов.
/* чтение командной строки до символа конца файла */
while (read(stdin, buffer, numchars))
/* синтаксический разбор командной строки */
if (/* командная строка содержит & */) amper = 1;
else amper = 0;
/* для команд, не являющихся конструкциями командного языка shell */
if (fork() == 0)
/* переадресация ввода-вывода? */
if (/* переадресация вывода */)
fd = creat(newfile, fmask);
close(stdout);
dup(fd);
close(fd);/* stdout теперь переадресован */
if (/* используются каналы */)
pipe(fildes);
if (fork() == 0)
/* первая компонента командной строки */
close(stdout);
dup(fildes[1]);
close(fildes[1]);
close(fildes[0]); /* стандартный вывод направляется в канал */
/* команду исполняет порожденный процесс */
execlp(command1, command1, 0);
/* вторая компонента командной строки */
close(stdin);
dup(fildes[0]);
close(fildes[0]);
close(fildes[1]); /* стандартный ввод будет производиться из канала */
execve(command2, command2, 0);
/* с этого места продолжается выполнение родительского процесса… процесс-родитель ждет завершения выполнения потомка, если это вытекает из введенной строки * /
if (amper == 0) retid = wait(&status);
Рисунок 7.28. Основной цикл программы shell
Shell считывает командную строку из файла стандартного ввода и интерпретирует ее в соответствии с установленным набором правил. Дескрипторы файлов стандартного ввода и стандартного вывода, используемые регистрационным shell'ом, как правило, указывают на терминал, с которого пользователь регистрируется в системе (см. главу 10). Если shell узнает во введенной строке конструкцию собственного командного языка (например, одну из команд cd, for, while и т. п.), он исполняет команду своими силами, не прибегая к созданию новых процессов; в противном случае команда интерпретируется как имя исполняемого файла.
Командные строки простейшего вида содержат имя программы и несколько параметров, например:
who
grep -n include *.c
ls -l
Shell „ветвится“ (fork) и порождает новый процесс, который и запускает программу, указанную пользователем в командной строке. Родительский процесс (shell) дожидается завершения потомка и повторяет цикл считывания следующей команды.
Если процесс запускается асинхронно (на фоне основной программы), как в следующем примере
nroff -mm bigdocument&
shell анализирует наличие символа амперсанд (&) и заносит результат проверки во внутреннюю переменную amper. В конце основного цикла shell обращается к этой переменной и, если обнаруживает в ней признак наличия символа, не выполняет функцию wait, а тут же повторяет цикл считывания следующей команды.
Из рисунка видно, что процесс-потомок по завершении функции fork получает доступ к командной строке, принятой shell'ом. Для того, чтобы переадресовать стандартный вывод в файл, как в следующем примере
nroff -mm bigdocument › output
процесс-потомок создает файл вывода с указанным в командной строке именем; если файл не удается создать (например, не разрешен доступ к каталогу), процесс-потомок тут же завершается. В противном случае процесс-потомок закрывает старый файл стандартного вывода и переназначает с помощью функции dup дескриптор этого файла новому файлу. Старый дескриптор созданного файла закрывается и сохраняется для запускаемой программы. Подобным же образом shell переназначает и стандартный ввод и стандартный вывод ошибок.
Рисунок 7.29. Взаимосвязь между процессами, исполняющими командную строку ls -l|wc
Из приведенного текста программы видно, как shell обрабатывает командную строку, используя один канал. Допустим, что командная строка имеет вид:
ls -l|wc
После создания родительским процессом нового процесса процесс-потомок создает канал. Затем процесс-потомок создает свое ответвление; он и его потомок обрабатывают по одной компоненте командной строки. „Внучатый“ процесс исполняет первую компоненту строки (ls): он собирается вести запись в канал, поэтому он закрывает старый файл стандартного вывода, передает его дескриптор каналу и закрывает старый дескриптор записи в канал, в котором (в дескрипторе) уже нет необходимости. Родитель (wc) „внучатого“ процесса (ls) является потомком основного процесса, реализующего программу shell'а (см.Рисунок 7.29). Этот процесс (wc) закрывает свой файл стандартного ввода и передает его дескриптор каналу, в результате чего канал становится файлом стандартного ввода. Затем закрывается старый и уже не нужный дескриптор чтения из канала и исполняется вторая компонента командной строки. Оба порожденных процесса выполняются асинхронно, причем выход одного процесса поступает на вход другого. Тем временем основной процесс дожидается завершения своего потомка (wc), после чего продолжает свою обычную работу: по завершении процесса, выполняющего команду wc, вся командная строка является обработанной. Shell возвращается в цикл и считывает следующую командную строку.
