- •Морис Дж. Бах Архитектура операционной системы unix предисловие
- •Глава 1. Общий обзор особенностей системы
- •1.1 История
- •1.2 Структура системы
- •1.3 Обзор с точки зрения пользователя
- •1.3.1 Файловая система
- •1.3.2 Среда выполнения процессов
- •1.3.3 Элементы конструкционных блоков
- •1.4 Функции операционной системы
- •1.5 Предполагаемая аппаратная среда
- •1.5.1 Прерывания и особые ситуации
- •1.5.2 Уровни прерывания процессора
- •1.5.3 Распределение памяти
- •1.6 Выводы
- •Глава 2. Введение в архитектуру ядра операционной системы
- •2.1 Архитектура операционной системы uniх
- •2.2 Введение в основные понятия системы
- •2.2.1 Обзор особенностей подсистемы управления файлами
- •2.2.2 Процессы
- •2.2.2.1 Контекст процесса
- •2.2.2.2 Состояния процесса
- •2.2.2.3 Переходы из состояния в состояние
- •2.2.2.4 «Сон» и пробуждение
- •2.3 Структуры данных ядра
- •2.4 Управление системой
- •2.5 Выводы и обзор последующих глав
- •2.6 Упражнения
- •Глава 3. Буфер сверхоперативной памяти (кеш)
- •3.1 Заголовки буфера
- •3.2 Структура области буферов (буферного пула)
- •3.3 Механизм поиска буфера
- •3.4 Чтение и запись дисковых блоков
- •3.5 Преимущества и неудобства буферного кеша
- •3.6 Выводы
- •3.7 Упражнения
- •Глава 4. Внутреннее представление файлов
- •4.1 Индексы
- •4.1.1 Определение
- •4.1.2 Обращение к индексам
- •4.1.3 Освобождение индексов
- •4.2 Структура файла обычного типа
- •4.3 Каталоги
- •4.4 Превращение составного имени файла (пути поиска) в идентификатор индекса
- •4.5 Суперблок
- •4.6 Назначение индекса новому файлу
- •4.7 Выделение дисковых блоков
- •4.8 Другие типы файлов
- •4.9 Выводы
- •4.10 Упражнения
- •Глава 5. Системные операции для работы с файловой системой
- •5.1 Open
- •5.2 Read
- •5.3 Wriте
- •5.4 Захват файла и записи
- •5.5 Указание места в файле, где будет выполняться ввод-вывод — lseeк
- •5.6 Closе
- •5.7 Создание файла
- •5.8 Создание специальных файлов
- •5.9 Смена текущего и корневого каталога
- •5.10 Cмена владельца и режима доступа к файлу
- •5.11 Stat и fstат
- •5.12 Каналы
- •5.12.1 Системная функция pipе
- •5.12.2 Открытие поименованного канала
- •5.12.3 Чтение из каналов и запись в каналы
- •5.12.4 Закрытие каналов
- •5.12.5 Примеры
- •5.14 Монтирование и демонтирование файловых систем
- •5.14.1 Пересечение точек монтирования в маршрутах поиска имен файлов
- •5.14.2 Демонтирование файловой системы
- •5.15 Linк
- •5.16 Unlinк
- •5.16.1 Целостность файловой системы
- •5.16.2 Поводы для конкуренции
- •5.17 Абстрактные обращения к файловым системам
- •5.18 Сопровождение файловой системы
- •5.19 Выводы
- •5.20 Упражнения
- •Глава 6. Структура процессов
- •6.1 Состояния процесса и переходы между ними
- •6.2 Формат памяти системы
- •6.2.1 Области
- •6.2.2 Страницы и таблицы страниц
- •6.2.3 Размещение ядра
- •6.2.4 Пространство процесса
- •6.3 Контекст процесса
- •6.4 Сохранение контекста процесса
- •6.4.1 Прерывания и особые ситуации
- •6.4.2 Взаимодействие с операционной системой через вызовы системных функций
- •6.4.3 Переключение контекста
- •6.4.4 Сохранение контекста на случай аварийного завершения
- •6.4.5 Копирование данных между адресным пространством системы и адресным пространством задачи
- •6.5 Управление адресным пространством процесса
- •6.5.1 Блокировка области и снятие блокировки
- •6.5.2 Выделение области
- •6.5.3 Присоединение области к процессу
- •6.5.4 Изменение размера области
- •6.5.5 Загрузка области
- •6.5.6 Освобождение области
- •6.5.7 Отсоединение области от процесса
- •6.5.8 Копирование содержимого области
- •6.6 Приостановка выполнения
- •6.6.1 События, вызывающие приостанов выполнения, и их адреса
- •6.6.2 Алгоритмы приостанова и возобновления выполнения
- •6.7 Выводы
- •6.8 Упражнения
- •Глава 7. Управление процессами
- •7.1 Создание процесса
- •7.2 Сигналы
- •7.2.1 Обработка сигналов
- •7.2.2 Группы процессов
- •7.2.3 Посылка сигналов процессами
- •7.3 Завершение выполнения процесса
- •7.4 Ожидание завершения выполнения процесса
- •7.5 Вызов других программ
- •7.6 Код идентификации пользователя процесса
- •7.7 Изменение размера процесса
- •7.8 Командный процессор shell
- •7.9 Загрузка системы и начальный процесс
- •7.10 Выводы
- •7.11 Упражнения
- •Глава 8. Диспетчеризация процессов и ее временные характеристики
- •8.1 Планирование выполнения процессов
- •8.1.1 Алгоритм
- •8.1.2 Параметры диспетчеризации
- •8.1.3 Примеры диспетчеризации процессов
- •8.1.4 Управление приоритетами
- •8.1.5 Планирование на основе справедливого раздела
- •8.1.6 Работа в режиме реального времени
- •8.2 Системные операции, связанные со временем
- •8.3 Таймер
- •8.3.1 Перезапуск часов
- •8.3.2 Внутренние системные тайм-ауты
- •8.3.3 Построение профиля
- •8.3.4 Учет и статистика
- •8.3.5 Поддержание времени в системе
- •8.4 Выводы
- •8.5 Упражнения
- •Глава 9. Алгоритмы управления памятью
- •9.1 Свопинг
- •9.1.1 Управление пространством на устройстве выгрузки
- •9.1.2 Выгрузка процессов
- •9.1.2.1 Выгрузка при выполнении системной функции fork
- •9.1.2.2 Выгрузка с расширением
- •9.1.3 Загрузка (подкачка) процессов
- •9.2 Подкачка по запросу
- •9.2.1 Структуры данных, используемые подсистемой замещения страниц
- •9.2.1.1 Функция fork в системе с замещением страниц
- •9.2.1.2 Функция exec в системе с замещением страниц
- •9.2.2 "Сборщик" страниц
- •9.2.3 Отказы при обращениях к страницам
- •9.2.3.1 Обработка прерываний по отказу из-за недоступности данных
- •9.2.3.2 Обработка прерываний по отказу системы защиты
- •9.2.4 Замещение страниц на менее сложной технической базе
- •9.3 Система смешанного типа со свопингом и подкачкой по запросу
- •9.4 Выводы
- •9.5 Упражнения
- •Глава 10. Подсистема управления вводом-выводом
- •10.1 Взаимодействие драйверов с программной и аппаратной средой
- •10.1.1 Конфигурация системы
- •10.1.2 Системные функции и взаимодействие с драйверами
- •10.1.2.1 Open
- •10.1.2.2 Closе
- •10.1.2.3 Read и Writе
- •10.1.2.4 Стратегический интерфейс
- •10.1.2.5 Ioctl
- •10.1.2.6 Другие функции, имеющие отношение к файловой системе
- •10.1.3 Программы обработки прерываний
- •10.2 Дисковые драйверы
- •10.3 Терминальные драйверы
- •10.3.1 Символьные списки
- •10.3.2 Терминальный драйвер в каноническом режиме
- •10.3.3 Терминальный драйвер в режиме без обработки символов
- •10.3.4 Опрос терминала
- •10.3.5 Назначение операторского терминала
- •10.3.6 Драйвер косвенного терминала
- •10.3.7 Вход в систему
- •10.4 Потоки
- •10.4.1 Более детальное рассмотрение потоков
- •10.4.2 Анализ потоков
- •10.5 Выводы
- •10.6 Упражнения
- •Глава 11. Взаимодействие процессов
- •11.1 Трассировка процессов
- •11.2 Взаимодействие процессов в версии V системы
- •11.2.1 Сообщения
- •11.2.2 Разделение памяти
- •11.2.3 Семафоры
- •11.2.4 Общие замечания
- •11.3 Взаимодействие в сети
- •11.4 Гнезда
- •11.5 Выводы
- •11.6 Упражнения
- •Глава 12. Многопроцессорные системы
- •12.1 Проблемы, связанные с многопроцессорными системами
- •12.2 Главный и подчиненный процессоры
- •12.3 Семафоры
- •12.3.1 Определение семафоров
- •12.3.2 Реализация семафоров
- •12.3.3 Примеры алгоритмов
- •12.3.3.1 Выделение буфера
- •12.3.3.2 Wait
- •12.3.3.3 Драйверы
- •12.3.3.4 Фиктивные процессы
- •12.4 Система tunis
- •12.5 Узкие места в функционировании многопроцессорных систем
- •12.6 Упражнения
- •Глава 13. Распределенные системы
- •13.1 Периферийные процессоры
- •13.2 Связь типа newcastlе
- •13.3 "Прозрачные" распределенные файловые системы
- •13.4 Распределенная модель без передаточных процессов
- •13.5 Выводы
- •13.6 Упражнения
- •Приложение системные операции
- •Библиография
2.3 Структуры данных ядра
Большинство информационных структур ядра размещается в таблицах фиксированного размера, а не в динамически выделенной памяти. Преимущество такого подхода состоит в том, что программа ядра проста, но в ней ограничивается число элементов информационной структуры до значения, предварительно заданного при генерации системы. Если во время функционирования системы число элементов информационной структуры ядра выйдет за указанное значение, ядро не сможет динамически выделить место для новых элементов и должно сообщить об ошибке пользователю, сделавшему запрос. Если, с другой стороны, ядро сгенерировано таким образом, что выход за границы табличного пространства будет маловероятен, дополнительное табличное пространство может не понадобиться, поскольку оно не может быть использовано для других целей. Как бы то ни было, простота алгоритмов ядра представляется более важной, чем сжатие последних байтов оперативной памяти. Обычно в алгоритмах для поиска свободных мест в таблицах используются несложные циклы и этот метод более понятен и иногда более эффективен по сравнению с более сложными схемами выделения памяти.
2.4 Управление системой
К управляющим процессам, грубо говоря, относятся те процессы, которые выполняют различные функции по обеспечению благополучной работы пользователей системы. К таким функциям относятся форматирование дисков, создание новых файловых систем, восстановление разрушенных файловых систем, отладка ядра и др. С концептуальной точки зрения, между управляющими и пользовательскими процессами нет разницы. Они используют один и тот же набор обращений к операционной системе, доступный для всех. Управляющие процессы отличаются от обычных пользовательских процессов только правами и привилегиями, которыми они обладают. Например, режимы разрешения доступа к файлу могут предусматривать предоставление возможности работы с файлами для управляющих процессов и отсутствие такой возможности для обычных пользователей. Внутри системы ядро выделяет особого пользователя, именуемого суперпользователем, и наделяет его особыми привилегиями, о чем мы еще поговорим ниже. Пользователь может стать суперпользователем, если соответствующим образом зарегистрируется в системе или запустит специальную программу. Привилегии суперпользователя будут рассмотрены в следующих главах. Если сказать коротко, ядро системы не выделяет управляющие процессы в отдельный класс.
Рисунок 2.9. Многократная приостановка выполнения процессов, вызванная блокировкой
2.5 Выводы и обзор последующих глав
В этой главе описана архитектура ядра операционной системы; его основными компонентами выступают подсистема управления файлами и подсистема управления процессами. Подсистема управления файлами управляет хранением и выборкой данных в пользовательских файлах. Файлы организованы в виде файловых систем, которые трактуются как логические устройства; физическое устройство, такое как диск, может содержать несколько логических устройств (файловых систем). Каждая файловая система имеет суперблок, в котором описывается структура и содержимое файловой системы, каждый файл в файловой системе описывается индексом, хранящим атрибуты файла. Системные операции работают с файлами, используя индексы.
Процессы находятся в различных состояниях и переходят из состояния в состояние, следуя определенным правилам перехода. В частности, процессы, выполняющиеся в режиме ядра, могут приостановить свое выполнение и перейти в состояние «сна», но ни один процесс не может перевести в это состояние другой процесс. Ядро является невыгружаемым и это означает, что процесс, выполняющийся в режиме ядра, будет продолжать свое выполнение до тех пор, пока не перейдет в состояние «сна» или пока не вернется в режим задачи. Ядро обеспечивает целостность своих информационных структур благодаря своей невыгружаемости, а также путем блокирования прерываний на время выполнения критических секций программы.
В остальных частях главы детально описываются подсистемы, изображенные на Рисунке 2.1, а также взаимодействие между ними, начиная с подсистемы управления файлами и включая подсистему управления процессами. В следующей главе рассматривается буфер сверхоперативной памяти (кеш) и описываются алгоритмы управления буфером, используемые в главах 4, 5 и 7. В главе 4 рассматриваются внутренние алгоритмы файловой системы, включая обработку индексов, структуру файлов, преобразование имени пути в индекс. В главе 5 рассматриваются системные операции, которые, используя приведенные в главе 4 алгоритмы, обращаются к файловой системе, т. е. такие, как open, close, read и write. Глава 6 имеет дело с понятием контекста процесса и его адресным пространством, а глава 7 рассматривает системные операции, связанные с управлением процессами и использующие алгоритмы главы 6. Глава 8 касается планирования выполнения процессов, в главе 9 обсуждаются алгоритмы распределения памяти. Глава 10 посвящена драйверам устройств, рассмотрение которых до того откладывалось, чтобы прежде объяснить связь драйвера терминала с управлением процессами. В главе 11 представлено несколько форм взаимодействия процессов. Наконец, в последних двух главах рассматриваются вопросы, связанные с углубленным изучением особенностей системы, в частности, особенности многопроцессорных систем и распределенных систем.
