- •Морис Дж. Бах Архитектура операционной системы unix предисловие
- •Глава 1. Общий обзор особенностей системы
- •1.1 История
- •1.2 Структура системы
- •1.3 Обзор с точки зрения пользователя
- •1.3.1 Файловая система
- •1.3.2 Среда выполнения процессов
- •1.3.3 Элементы конструкционных блоков
- •1.4 Функции операционной системы
- •1.5 Предполагаемая аппаратная среда
- •1.5.1 Прерывания и особые ситуации
- •1.5.2 Уровни прерывания процессора
- •1.5.3 Распределение памяти
- •1.6 Выводы
- •Глава 2. Введение в архитектуру ядра операционной системы
- •2.1 Архитектура операционной системы uniх
- •2.2 Введение в основные понятия системы
- •2.2.1 Обзор особенностей подсистемы управления файлами
- •2.2.2 Процессы
- •2.2.2.1 Контекст процесса
- •2.2.2.2 Состояния процесса
- •2.2.2.3 Переходы из состояния в состояние
- •2.2.2.4 «Сон» и пробуждение
- •2.3 Структуры данных ядра
- •2.4 Управление системой
- •2.5 Выводы и обзор последующих глав
- •2.6 Упражнения
- •Глава 3. Буфер сверхоперативной памяти (кеш)
- •3.1 Заголовки буфера
- •3.2 Структура области буферов (буферного пула)
- •3.3 Механизм поиска буфера
- •3.4 Чтение и запись дисковых блоков
- •3.5 Преимущества и неудобства буферного кеша
- •3.6 Выводы
- •3.7 Упражнения
- •Глава 4. Внутреннее представление файлов
- •4.1 Индексы
- •4.1.1 Определение
- •4.1.2 Обращение к индексам
- •4.1.3 Освобождение индексов
- •4.2 Структура файла обычного типа
- •4.3 Каталоги
- •4.4 Превращение составного имени файла (пути поиска) в идентификатор индекса
- •4.5 Суперблок
- •4.6 Назначение индекса новому файлу
- •4.7 Выделение дисковых блоков
- •4.8 Другие типы файлов
- •4.9 Выводы
- •4.10 Упражнения
- •Глава 5. Системные операции для работы с файловой системой
- •5.1 Open
- •5.2 Read
- •5.3 Wriте
- •5.4 Захват файла и записи
- •5.5 Указание места в файле, где будет выполняться ввод-вывод — lseeк
- •5.6 Closе
- •5.7 Создание файла
- •5.8 Создание специальных файлов
- •5.9 Смена текущего и корневого каталога
- •5.10 Cмена владельца и режима доступа к файлу
- •5.11 Stat и fstат
- •5.12 Каналы
- •5.12.1 Системная функция pipе
- •5.12.2 Открытие поименованного канала
- •5.12.3 Чтение из каналов и запись в каналы
- •5.12.4 Закрытие каналов
- •5.12.5 Примеры
- •5.14 Монтирование и демонтирование файловых систем
- •5.14.1 Пересечение точек монтирования в маршрутах поиска имен файлов
- •5.14.2 Демонтирование файловой системы
- •5.15 Linк
- •5.16 Unlinк
- •5.16.1 Целостность файловой системы
- •5.16.2 Поводы для конкуренции
- •5.17 Абстрактные обращения к файловым системам
- •5.18 Сопровождение файловой системы
- •5.19 Выводы
- •5.20 Упражнения
- •Глава 6. Структура процессов
- •6.1 Состояния процесса и переходы между ними
- •6.2 Формат памяти системы
- •6.2.1 Области
- •6.2.2 Страницы и таблицы страниц
- •6.2.3 Размещение ядра
- •6.2.4 Пространство процесса
- •6.3 Контекст процесса
- •6.4 Сохранение контекста процесса
- •6.4.1 Прерывания и особые ситуации
- •6.4.2 Взаимодействие с операционной системой через вызовы системных функций
- •6.4.3 Переключение контекста
- •6.4.4 Сохранение контекста на случай аварийного завершения
- •6.4.5 Копирование данных между адресным пространством системы и адресным пространством задачи
- •6.5 Управление адресным пространством процесса
- •6.5.1 Блокировка области и снятие блокировки
- •6.5.2 Выделение области
- •6.5.3 Присоединение области к процессу
- •6.5.4 Изменение размера области
- •6.5.5 Загрузка области
- •6.5.6 Освобождение области
- •6.5.7 Отсоединение области от процесса
- •6.5.8 Копирование содержимого области
- •6.6 Приостановка выполнения
- •6.6.1 События, вызывающие приостанов выполнения, и их адреса
- •6.6.2 Алгоритмы приостанова и возобновления выполнения
- •6.7 Выводы
- •6.8 Упражнения
- •Глава 7. Управление процессами
- •7.1 Создание процесса
- •7.2 Сигналы
- •7.2.1 Обработка сигналов
- •7.2.2 Группы процессов
- •7.2.3 Посылка сигналов процессами
- •7.3 Завершение выполнения процесса
- •7.4 Ожидание завершения выполнения процесса
- •7.5 Вызов других программ
- •7.6 Код идентификации пользователя процесса
- •7.7 Изменение размера процесса
- •7.8 Командный процессор shell
- •7.9 Загрузка системы и начальный процесс
- •7.10 Выводы
- •7.11 Упражнения
- •Глава 8. Диспетчеризация процессов и ее временные характеристики
- •8.1 Планирование выполнения процессов
- •8.1.1 Алгоритм
- •8.1.2 Параметры диспетчеризации
- •8.1.3 Примеры диспетчеризации процессов
- •8.1.4 Управление приоритетами
- •8.1.5 Планирование на основе справедливого раздела
- •8.1.6 Работа в режиме реального времени
- •8.2 Системные операции, связанные со временем
- •8.3 Таймер
- •8.3.1 Перезапуск часов
- •8.3.2 Внутренние системные тайм-ауты
- •8.3.3 Построение профиля
- •8.3.4 Учет и статистика
- •8.3.5 Поддержание времени в системе
- •8.4 Выводы
- •8.5 Упражнения
- •Глава 9. Алгоритмы управления памятью
- •9.1 Свопинг
- •9.1.1 Управление пространством на устройстве выгрузки
- •9.1.2 Выгрузка процессов
- •9.1.2.1 Выгрузка при выполнении системной функции fork
- •9.1.2.2 Выгрузка с расширением
- •9.1.3 Загрузка (подкачка) процессов
- •9.2 Подкачка по запросу
- •9.2.1 Структуры данных, используемые подсистемой замещения страниц
- •9.2.1.1 Функция fork в системе с замещением страниц
- •9.2.1.2 Функция exec в системе с замещением страниц
- •9.2.2 "Сборщик" страниц
- •9.2.3 Отказы при обращениях к страницам
- •9.2.3.1 Обработка прерываний по отказу из-за недоступности данных
- •9.2.3.2 Обработка прерываний по отказу системы защиты
- •9.2.4 Замещение страниц на менее сложной технической базе
- •9.3 Система смешанного типа со свопингом и подкачкой по запросу
- •9.4 Выводы
- •9.5 Упражнения
- •Глава 10. Подсистема управления вводом-выводом
- •10.1 Взаимодействие драйверов с программной и аппаратной средой
- •10.1.1 Конфигурация системы
- •10.1.2 Системные функции и взаимодействие с драйверами
- •10.1.2.1 Open
- •10.1.2.2 Closе
- •10.1.2.3 Read и Writе
- •10.1.2.4 Стратегический интерфейс
- •10.1.2.5 Ioctl
- •10.1.2.6 Другие функции, имеющие отношение к файловой системе
- •10.1.3 Программы обработки прерываний
- •10.2 Дисковые драйверы
- •10.3 Терминальные драйверы
- •10.3.1 Символьные списки
- •10.3.2 Терминальный драйвер в каноническом режиме
- •10.3.3 Терминальный драйвер в режиме без обработки символов
- •10.3.4 Опрос терминала
- •10.3.5 Назначение операторского терминала
- •10.3.6 Драйвер косвенного терминала
- •10.3.7 Вход в систему
- •10.4 Потоки
- •10.4.1 Более детальное рассмотрение потоков
- •10.4.2 Анализ потоков
- •10.5 Выводы
- •10.6 Упражнения
- •Глава 11. Взаимодействие процессов
- •11.1 Трассировка процессов
- •11.2 Взаимодействие процессов в версии V системы
- •11.2.1 Сообщения
- •11.2.2 Разделение памяти
- •11.2.3 Семафоры
- •11.2.4 Общие замечания
- •11.3 Взаимодействие в сети
- •11.4 Гнезда
- •11.5 Выводы
- •11.6 Упражнения
- •Глава 12. Многопроцессорные системы
- •12.1 Проблемы, связанные с многопроцессорными системами
- •12.2 Главный и подчиненный процессоры
- •12.3 Семафоры
- •12.3.1 Определение семафоров
- •12.3.2 Реализация семафоров
- •12.3.3 Примеры алгоритмов
- •12.3.3.1 Выделение буфера
- •12.3.3.2 Wait
- •12.3.3.3 Драйверы
- •12.3.3.4 Фиктивные процессы
- •12.4 Система tunis
- •12.5 Узкие места в функционировании многопроцессорных систем
- •12.6 Упражнения
- •Глава 13. Распределенные системы
- •13.1 Периферийные процессоры
- •13.2 Связь типа newcastlе
- •13.3 "Прозрачные" распределенные файловые системы
- •13.4 Распределенная модель без передаточных процессов
- •13.5 Выводы
- •13.6 Упражнения
- •Приложение системные операции
- •Библиография
10.5 Выводы
Данная глава представляет собой обзор драйверов устройств в системе UNIX. Устройства могут быть либо блочного, либо символьного типа; интерфейс между устройствами и остальной частью ядра определяется типом устройств. Интерфейсом для устройств блочного типа выступает таблица ключей устройств ввода-вывода блоками, состоящая из точек входа, соответствующих процедурам открытия и закрытия устройств и стратегической процедуре. Стратегическая процедура управляет передачей данных от и к устройству блочного типа. Интерфейсом для устройств символьного типа выступает таблица ключей устройств посимвольного ввода-вывода, которая состоит из точек входа, соответствующих процедурам открытия и закрытия устройства, чтения, записи и процедуре ioctl. Системная функция ioctl использует при обращении к устройствам символьного типа свой собственный интерфейс, который позволяет осуществлять передачу управляющей информации между процессами и устройствами. По получении прерывания от устройства ядро вызывает программу обработки соответствующего прерывания, опираясь на информацию, хранящуюся в таблице векторов прерываний, и на параметры, сообщенные устройством, от которого поступило прерывание.
Дисковые драйверы превращают номера логических блоков, используемые файловой системой, в физические адреса на диске. Блочный интерфейс дает возможность ядру буферизовать данные. Взаимодействие без обработки ускоряет ввод-вывод на диск, но игнорирует буферный кеш, увеличивая тем самым шансы разрушить файловую систему.
Терминальные драйверы осуществляют непосредственное взаимодействие с пользователями. Ядро связывает с каждым терминалом три символьных списка, один для неструктурированного ввода с клавиатуры, один для ввода с обработкой символов стирания, удаления и возврата каретки и один для вывода. Системная функция ioctl дает процессам возможность следить за тем, как ядро обрабатывает вводимые данные, переводя терминал в канонический режим или устанавливая значения различных параметров для режима без обработки символов. Getty-процесс открывает терминальные линии и ждет связи: он формирует группу процессов во главе с регистрационным shell'ом, инициализирует с помощью функции ioctl параметры терминала и обращается к пользователю с предложением зарегистрироваться. Установленный таким образом операторский терминал посылает процессам в группе сигналы в ответ на возникновение таких событий, как "зависание" пользователя или нажатие им клавиши прерывания.
Потоки выступают средством повышения модульности построения драйверов устройств и протоколов. Поток — это полнодуплексная связь между процессами и драйверами устройств, которая может включать в себя строковые интерфейсы и протоколы для промежуточной обработки данных. Модули потоков характеризуются четко определенным взаимодействием и гибкостью, позволяющей использовать их в сочетании с другими модулями. Эта гибкость имеет особое значение для сетевых протоколов и драйверов.
10.6 Упражнения
1. * Предположим, что в системе имеются два файла устройств с одними и теми же старшим и младшим номерами, при том, что оба устройства — символьного типа. Если два процесса желают одновременно открыть физическое устройство, не будет никакой разницы, открывают ли они один и тот же файл устройства или же разные файлы. Что произойдет, когда они станут закрывать устройство?
2. * Вспомним из главы 5, что системной функции mknod требуется разрешение суперпользователя на создание нового специального файла устройства. Если доступ к устройству управляется правами доступа к файлу, почему функции mknod нужно разрешение суперпользователя?
3. Напишите программу, которая проверяет, что файловые системы на диске не перекрываются. Этой программе потребовались бы два аргумента: файл устройства, представляющий дисковый том, и дескриптор файла, откуда берутся номера секторов и их размер для диска данного типа. Для проверки отсутствия перекрытий этой программе понадобилась бы информация из суперблоков. Будет ли такая программа всегда правильной?
4. Программа mkfs инициализирует файловую систему на диске путем создания суперблока, выделения места для списка индексов, включения всех информационных блоков в связанный список и создания корневого каталога. Как бы вы написали программу mkfs? Как изменится эта программа при наличии таблицы содержимого тома? Каким образом следует инициализировать таблицу содержимого тома?
5. Программы mkfs и fsck (глава 5) являются программами пользовательского уровня, а не частью ядра. Прокомментируйте это.
6. Предположим, что программисту нужно разработать базу данных, работающую в среде ОС UNIX. Программы базы данных выполняются на пользовательском уровне, а не в составе ядра. Как система управления базой данных будет взаимодействовать с диском? Подумайте над следующими вопросами:
• Использование стандартного интерфейса файловой системы вместо непосредственной работы с неструктурированными данными на диске,
• Потребность в быстродействии,
• Необходимость знать, когда фактически данные располагаются на диске,
• Размер базы данных: должна ли она помещаться в одной файловой системе, занимать собой весь дисковый том или же располагаться на нескольких дисковых томах?
7. Ядро системы UNIX по умолчанию предполагает, что файловая система располагается на идеальных дисках. Однако, диски могут содержать ошибки, которые делают непригодными и выводят из строя определенные сектора, несмотря на то, что остальная часть диска осталась "пригодной". Как дисковому драйверу (или интеллектуальному контроллеру диска) следует учитывать небольшое количество плохих секторов. Как это отразилось бы на производительности системы?
8. При монтировании файловой системы ядро запускает процедуру открытия для данного драйвера, но позже освобождает индекс специального файла устройства по завершении выполнения вызова системной функции mount. При демонтировании файловой системы ядро обращается к индексу специального файла устройства, запускает процедуру закрытия для данного драйвера и вновь освобождает индекс. Сравните эту последовательность операций над индексом, а также обращений к процедурам открытия и закрытия драйвера, с последовательностью действий, совершаемых при открывании и закрывании устройства блочного типа. Прокомментируйте результаты сравнения.
9. Выполните программу, приведенную на Рисунке 10.14, но направьте вывод данных в файл. Сравните содержимое файла с содержимым выводного потока, когда вывод идет на терминал. Вам придется прервать процессы, чтобы остановить их; только прежде пусть они получат достаточно большое количество данных. Что произойдет, если вызов функции write в программе заменить на printf(output);
10. Что произойдет, если пользователь попытается выполнить редактирование текста на фоне программы:
ed file&
Обоснуйте ответ.
11. К файлам терминалов обычно устанавливаются следующие права доступа
crw-w-w- 2 mjb lus 33,11 Oct 25 20:27 tty61
при входе пользователя в систему. То есть, чтение и запись разрешаются пользователю с именем "mjb", а остальным пользователям разрешена только запись. Почему?
12. Предположим, что вам известно имя файла терминала вашего товарища. Напишите программу записи сообщений с вашего терминала на терминал вашего товарища. Какая еще информация вам нужна, чтобы закодировать приемлемое воспроизведение обычной команды write?
13. Выполните команду stty: если параметры не указаны, она выбирает значения установок терминала и сообщает их пользователю. В противном случае пользователь может в интерактивном режиме сделать различные установки сам.
14. Напишите элементарный строковый интерфейс, записывающий идентификатор машины в начале каждой строки выводного потока.
15. В каноническом режиме пользователь может на время приостановить вывод данных на терминал, нажав последовательность клавиш ‹Ctrl-s›, и продолжить вывод, нажав ‹Ctrl-q›. Как в стандартном строковом интерфейсе реализуется эта особенность?
16. *Процесс начальной загрузки порождает getty-процесс для каждой терминальной линии в системе. Что произошло бы, если бы для одного и того же терминала существовали бы одновременно два getty-процесса, ожидающие регистрации пользователя? Может ли ядро помешать этому?
17. Пусть командный процессор shell реализован таким образом, что он "игнорирует" конец файла и продолжает считывать данные из стандартного ввода. Что произошло бы, если бы пользователь (в регистрационном shell'е) угадал конец файла и продолжил ввод с клавиатуры?
18. *Предположим, что процесс считывает данные с операторского терминала, но игнорирует или улавливает сигналы о "зависании". Что произойдет, когда процесс продолжит считывать данные с операторского терминала после зависания?
19. Программа getty-процесса несет ответственность за открытие терминальной линии, а программа login — за проверку регистрационных имен и паролей. Какие преимущества в том, что эти функции выполняются отдельными программами?
20. Рассмотрим два метода реализации драйвера косвенного терминала ("/dev/tty"), описанные в разделе 10.3.6. Какие различия между ними чувствует пользователь? (Совет: подумайте о системных функциях stat и fstat).
21. Разработайте метод планирования выполнения модулей потока, в соответствии с которым ядро имеет в своем составе специальный процесс, выполняющий процедуры обслуживания модулей тогда, когда выполнение этих процедур запланировано.
22. * Разработайте схему построения виртуальных терминалов (окон) с использованием традиционных (не потоковых) драйверов.
23. * Разработайте метод реализации виртуальных терминалов с использованием потоков, в котором мультиплексированием ввода-вывода между виртуальным и физическим терминалами занимался бы один из модулей ядра, а не пользовательский процесс. Опишите механизм соединения потоков со сверткой и разверткой. Что лучше: включить модуль, осуществляющий мультиплексирование, в состав ядра или построить его как пользовательский процесс?
24. Команда ps сообщает интересную информацию об активности процессов в работающей системе. В традиционных реализациях ps считывает информацию из таблицы процессов, прямо из памяти ядра. Такой метод не совсем удобен в среде разработки, когда размер записей таблицы процессов меняется и команде ps становится нелегко обнаружить в таблице соответствующие поля. Разработайте драйвер, нечувствительный к изменениям среды.
