Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МР по выпол практических работ.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
2.02 Mб
Скачать

Приложение производной в экономической теории

Рассмотрим некоторые примеры приложения производной в экономической теории. Как мы увидим, многие, в том числе базовые, законы теории производства и потребления, спроса и предложения оказываются прямыми следствиями математических теорем, сформулированных в настоящей главе.

Вначале рассмотрим экономическую интерпретацию теоремы Ферма.

Один из базовых законов теории производства звучит так: оптимальный для производителя уровень выпуска товара определяется равенством предельных издержек и предельного дохода.

То есть уровень выпуска является оптимальным для производителя, если MS =MD( ),где MS-предельные издержки, а MD-предельный доход.

Обозначим функцию прибыли за C . Тогда С =D -S .

Очевидно, что оптимальным уровнем производства является тот, при котором прибыль максимальна, т.е. такое значение выпуска , при котором функция С имеет экстремум (максимум). По теореме Ферма в этой точке =0. Но = - S , поэтому ( ) = ( ), т.е. MD( )= MS .

Другое важное понятие теории производства - это уровень наиболее экономичного производства, при котором средние издержки по производству товара минимальны. Соответствующий экономический закон гласит: уровень наиболее экономичного производства определяется равенством средних и предельных издержек.

Получим это условие как следствие теоремы Ферма. Средние издержки AS определяются как , т.е. издержки по производству товара, деленные на производственное его количество. Минимум этой величины достигается в критической точке функции =AS , т.е. при условии

= =0, откуда или = , т.е. MS =AS .

Понятие выпуклости функции также находит свою интерпретацию в экономической теории.

Один из наиболее знаменитых экономических законов- закон убывающей доходности- звучит следующим образом: с увеличением производства дополнительная продукция, полученная на каждую новую единицу ресурса (трудового, технологического и т.д.), с некоторого момента убывает.

Иными словами, величина , где - приращение ресурса, а - приращение выпуска продукции, уменьшается при увеличении . Таким образом, закон убывающей доходности формулируется так: функция = , выражающая зависимость выпуска продукции от вложенного ресурса, является функцией, выпуклой вверх.

Другим базисным понятием экономической теории является функция полезности , где - товар, а - полезность. Эта величина очень субъективная для каждого отдельного потребителя, но достаточно объективная для общества в целом. Закон убывающей полезности звучит следующим образом: с ростом количества товара дополнительная полезность от каждой новой его единицы с некоторого момента убывает. Очевидно, этот закон можно переформулировать так: функция полезности является функцией, выпуклой вверх. В такой постановке закон убывающей полезности служит отправной точкой для математического исследования теории спроса и предложения.