
- •1 Введение в теорию моделирования
- •1.1 Общие вопросы теории моделирования
- •1.1.1 Основные понятия моделирования
- •1.1.2 Принципы системного подхода в моделировании систем
- •1.1.3 Классификация видов моделирования систем
- •1.2 Методология математического моделирования
- •1.3 Постановка задач оптимизации и методы поиска оптимальных решений
- •1.3.1 Общая постановка и классификация задач оптимизации
- •1.3.2 Классификация методов оптимизации
- •1.3.3 Детерминистские методы оптимизации
- •1.3.4 Стохастические методы оптимизации
- •1.3.5 Выбор метода решения задачи оптимального проектирования
- •1.4 Планирование машинных экспериментов с моделями систем
- •1.4.1 Методы планирования экспериментов
- •1.4.2 Стратегическое планирование машинных экспериментов с моделями
- •1.4.3 Тактическое планирование машинных экспериментов с моделями
- •1.4.4 Обработка и анализ результатов моделирования
- •1.4.4.1 Особенности фиксации и статистической обработки результатов моделирования систем на эвм
- •1.4.4.2 Анализ и интерпретация результатов машинного моделирования
- •1.4.4.3 Обработка результатов машинного эксперимента при синтезе систем
- •1.5 Организация натурного эксперимента на действующих образцах и физических моделях
- •1.5.1 Методология экспериментальных исследований
- •1.5.2 Выбор и составление плана эксперимента
- •Составление планов эксперимента с учетом возможности проведения корреляционного анализа.
- •Составление планов эксперимента для проведения дисперсионного анализа.
- •Составление планов экспериментов для проведения однофакторного дисперсионного анализа.
- •Составление планов экспериментов для проведения двухфакторного дисперсионного анализа.
- •Составление планов экспериментов для проведения многофакторного дисперсионного анализа.
- •Математическое планирование эксперимента для проведения регрессионного анализа.
- •1.5.3 Планирование эксперимента для решения оптимизационных задач
- •Метод крутого восхождения или наискорейшего спуска по поверхности функции отклика объекта.
- •Метод симплекс-планирования.
- •1.6 Проведение натурного эксперимента с использованием современных средств исследований
- •1.6.1 Технические средства проведения натурного эксперимента
- •1.6.1.1 Общая характеристика технических средств
- •1.6.1.2 Технические средства от фирмы National Instruments
- •1.6.1.3 Классификация технических средств, в зависимости от типа объектов исследования
- •1.6.2 Программные средства от фирмы National Instruments
Составление планов экспериментов для проведения многофакторного дисперсионного анализа.
При многофакторном эксперименте одновременно изменяются три и более факторов. Общее число опытов (без их повторений) для ПФЭ с k изменяемыми факторами (если каждый из них имеет одно и то же максимальное число уровней m) будет равно:
NПФЭ = mk.
Очевидно, что с увеличением числа исследуемых факторов (k) общее число опытов в эксперименте будет резко возрастать. Поэтому при многофакторных экспериментах часто применяют планы дробных факторных экспериментов (ДФЭ), которые предусматривают выполнение опытов только с частью всех возможных сочетаний различных уровней всех факторов. Долю общего числа опытов ДФЭ (NДФЭ) от NПФЭ называют степенью дробности ДФЭ.
Необходимо помнить, что сокращение числа опытов в эксперименте, т.е. переход от ПФЭ к ДФЭ, всегда приводит к снижению точности дисперсионного анализа результатов эксперимента.
Существуют различные принципы составления и типы планов ДФЭ: составление планов по принципу дробных реплик, латинских квадратов и кубов, планы ПлакеттаБермана и др. Эти планы относятся к планам математического планирования эксперимента, так как при их построении сочетание уровней факторов в опытах (выбор части опытов из планов ПФЭ) происходит не произвольно, а по определенным принципам математической комбинаторики.
Планы ДФЭ широко применяются при отсеивающих экспериментах, т.е. тогда, когда необходимо изучить достаточно большое число факторов при небольшом числе опытов и определить те факторы, которые оказывают наиболее сильное влияние на свойство y. Одними из самых экономичных по числу опытов и эффективных для дисперсионного анализа из известных планов ДФЭ являются планы ПлакеттаБермана.
Правильность построения плана ПлакеттаБермана определяется двумя признаками:
1. Диагональным расположением одинаковых знаков в ячейках плана.
2. Равенством количества знаков (+) и (-) в каждом столбце плана.
План с натуральными значениями факторов получается из плана с кодированными значениями путем замены знаков (+) и (-) на соответствующие им натуральные значения для каждого фактора.
Примеры составления других планов многофакторного ДФЭ для проведения дисперсионного анализа и алгоритмы математической обработки результатов эксперимента изучите самостоятельно [8].
Проведение дисперсионного анализа можно легко осуществить с помощью ПЭВМ с использованием различных общепризнанных статистических программных продуктов: STATGRAPHICS, STADIA [7], STATISTICA и др.
Планирование эксперимента для применения регрессионного анализа. Регрессионный анализ (РА) - метод математической статистики, который позволяет выявить приближенную количественную зависимость (f) свойства объекта y от значений факторов xj, оказывающих влияние на это свойство. Эта приближенная зависимость, выраженная в виде конкретной математической функции, называется уравнением регрессии:
.
Проводить РА можно только для количественных значений y и xj.
При РА решают две основные задачи:
Ищут с помощью метода приближения уравнение регрессии, наиболее точно описывающее истинную зависимость y = (xj) по результатам измерения свойств объекта при различных значениях факторов:
y = (x1, x2, ..., xj, ...xk ) + = f(x1, x2, ..., xj, ...xk ) + + .
2. Оценивают ошибки ( + ), допускаемые при описании истинной зависимости с помощью найденного уравнения регрессии.
Порядок проведения РА (его тип) зависит от плана эксперимента. Различают классический РА (КРА) и РА при математическом планировании эксперимента (РАМПЭ).
Составление планов эксперимента для проведения классического регрессионного анализа. Общим требованием к планированию любого эксперимента для проведения КРА является выполнение условия mj > 2. Другие рекомендации аналогичны планированию эксперимента для проведения дисперсионного анализа.
После планирования и завершения эксперимента проведение КРА его результатов проводят в такой последовательности:
Выбирают семейство математических функций, в котором предполагается найти уравнение регрессии (семейство прямых, парабол, гипербол и др.).
Выбирают метод приближения.
Для выбранного семейства функций с помощью метода приближения рассчитывают параметры функции (коэффициенты уравнения регрессии).
Проверяют рассчитанные коэффициенты уравнения регрессии на значимость (равенство нулю).
Корректируют вид исходной функции, исключая из нее незначимые коэффициенты и другие составляющие.
Рассчитывают параметры скорректированной функции (скорректированные коэффициенты уравнения регрессии) и возвращаются к выполнению пунктов 4,5. Пункт 6 выполняют до тех пор, пока в уравнении регрессии останутся только значимые коэффициенты (значения коэффициентов могут изменяться после каждого пересчета)
Оценивают ошибки ( + ), допускаемые при описании истинной зависимости с помощью найденного уравнения регрессии: проверяют адекватность уравнения регрессии с помощью закона распределения Фишера или рассчитывают вероятность описания зависимости функцией f.
Выбирают другое семейство математических функций и (или) метод приближения и с ними последовательно выполняют пункты 3-7.
Из группы найденных уравнений регрессии в ряду разных семейств функций выбирают окончательное уравнение регрессии по следующим соображениям:
а) вид данного уравнения регрессии совпадает с теоретическими законами поведения объекта;
б) данное уравнение регрессии описывает поведение объекта с наибольшей вероятностью;
в) при одной вероятности для данного уравнения регрессии наблюдается наибольшее значение соотношения факторной и остаточной дисперсий (F-соотношения).
При выборе семейства функций (пункты 1 и 8), если нет сведений или теоретических предположений о типе зависимости , обычно действуют по принципу "от простого к сложному". При этом начинают с семейства прямых ("линейная регрессия") или трансцендентных функций, которые легко преобразуются в линейную форму ("трансцендентная регрессия").
При неадекватности найденного линейного уравнения регрессии или неудовлетворенности его точностью можно переходить к семейству полиномов с постепенным увеличением их степени (полиномы второго, третьего и др. порядков) до тех пор, пока не начнет уменьшаться F-соотношение. Вид функции также зависит от числа одновременно изменяемых факторов при эксперименте.
Наиболее часто при выполнении РА в качестве метода приближения используют метод наименьших квадратов (МНК). Однако применение МНК является корректным при выполнении следующих требований:
а) единичные результаты измерения свойств y должны быть независимыми случайными величинами;
б) выборочные дисперсии yz должны быть однородными (одинаковыми).
При невыполнении этих условий используют другие методы приближения (непараметрические методы регрессии).
Алгоритмы всех необходимых при КРА расчетов (пункты 3,4,6,7) зависят от выбранного семейства функций, метода приближения, наличия повторных опытов, количества исследуемых факторов (изучить самостоятельно [42,43,44,45]). Многие из этих алгоритмов реализованы в статистических программных продуктах, математических пакетах (MathCAD и др.), электронных таблицах (Excel и др.).
Следует отметить, что выполнение пункта 9 носит субъективный характер и для него пока еще нет общепризнанных рекомендаций.