- •Автор-составитель: ручкина любовь григорьевна канд. Техн. Наук, доцент кафедры ЭиЭ
- •1. Цель и задачи дисциплины
- •2. Содержание дисциплины
- •Введение
- •Общие сведения о строении вещества
- •Диэлектрики
- •2.4. Проводниковые и сверхпроводниковые материалы
- •2.5. Полупроводниковые материалы
- •2.6. Магнитные материалы
- •Перечень тем лекционных занятий Примерный объем в часах
- •5. Информационно-методическое обеспечение дисциплины
- •5.1. Основная
- •5.2. Дополнительная
- •6. Краткие методические рекомендации к самостоятельной работе
- •190401 – Электроснабжение железных дорог (энс)
- •190402 – Автоматика, телемеханика и связь на железнодорожном транспорте (атс)
- •1.1. Что такое материал, материаловедение, электротехническое материаловедение.
- •1.2. Роль материалов в современной технике.
- •1.3. Основные типы материалов, применяемых в энергетике и электротехнике, композиционные материалы.
- •1.1. Что такое материал, материаловедение, электротехническое материаловедение.
- •1.2. Роль материалов в современной технике, в частности в энергетике.
- •1.3. Основные типы материалов, применяемых в энергетике и электротехнике, композиционные материалы.
- •Характеристики композиционных материалов
- •Лекция 2 Электрофизические характеристики материалов. Электропроводность.
- •2.1. Основное уравнение электропроводности.
- •2.2. Электропроводность проводников, полупроводников и диэлектриков
- •2.3. Проводимость жидких диэлектриков и электролитов.
- •2.1. Основное уравнение электропроводности.
- •2.2. Электропроводность проводников, полупроводников и диэлектриков.
- •2.3. Проводимость жидкостей и электролитов.
- •Лекция 3 Электрофизические характеристики материалов. Диэлектрическая и магнитная проницаемости.
- •3.1. Диэлектрическая проницаемость и электрические поля в диэлектриках.
- •3.2.. Магнитная проницаемость и магнитные поля.
- •3.1. Диэлектрическая проницаемость материалов.
- •Лекция 4 Теплофизические и механические характеристики материалов.
- •4.1. Понятие температуры. Характерные температуры (плавления, кипения, Кюри, и т.П.) Температуростойкость материалов. Теплостойкость материалов.
- •4.2. Теплоемкость, теплопроводность, температурные коэффициенты материалов.
- •4.3. Механические свойства материалов. Удлинение, деформация, модуль упругости. Разрушающие напряжения при различных видах нагрузки.
- •4.1. Понятие температуры. Характерные температуры (плавления, кипения, Кюри, и т.П.) Температуростойкость материалов. Теплостойкость материалов.
- •4.2. Теплоемкость, теплопроводность, температурные коэффициенты материалов.
- •4.3. Механические свойства материалов. Удлинение, деформация, модуль упругости. Разрушающие напряжения при различных видах нагрузки.
- •Лекция 5 Конструкционные материалы.
- •5.1. Общие свойства конструкционных материалов.
- •5.2. Конструкционные стали.
- •5.3. Цветные металлы и сплавы.
- •5.4. Бетон. Железобетон.
- •Лекция 6 Проводниковые материалы
- •6.1. Общие свойства проводников. Температурный коэффициент сопротивления, потери, нагрев проводников.
- •6.2. Материалы для проводов. Медь, алюминий.
- •6.3. Материалы для контактов.
- •6.4. Материалы с малым температурным коэффициентом сопротивления. Материалы для термопар.
- •Лекция 7 Слабопроводящие материалы
- •7.1. Электропроводность полупроводников и слабопроводящих материалов.
- •7.2. Резистивные материалы. Углеродные композиты, бетэл, эком, электропроводящие полимеры.
- •7.3. Материалы с нелинейной проводимостью. Оцк, позисторная керамика , силит, вилит.
- •7.1. Электропроводность полупроводников и слабопроводящих материалов.
- •7.2. Резистивные материалы. Углеродные композиты, бетэл, эком, электропроводящие полимеры.
- •7.2.1 Металлические резистивные материалы
- •7.2.2. Графит. Бетэл
- •7.2.3 Материал «эком» для резисторов и обогревателей
- •7.2.4. Электропроводящие полимеры
- •7.3. Материалы с нелинейной проводимостью. Оцк, силит, вилит.
- •Лекция 8 Электропроводность и потери в диэлектриках
- •8.1. Диэлектрическое и резистивное состояние вещества.
- •8.2. Особенности электропроводности для различных агрегатных состояний.
- •8.3. Проводимость неоднородных диэлектриков.
- •8.4. Диэлектрические потери.
- •Лекция 9 Процессы в диэлектриках под действием сильных электрических полей
- •9.1. Элементарные процессы в газах. Лавина, стример, лидер.
- •9.2. Пробой в жидкостях. Эмпирические зависимости электрической прочности. Роль газовых пузырьков.
- •9.3. Пробой твердых диэлектриков. Электрический пробой. Тепловой пробой. Частичные разряды.
- •9.1. Элементарные процессы в газе. Лавина, стример, лидер.
- •9.2. Пробой жидкостей
- •Закономерности импульсного пробоя жидкости
- •9.3. Электрический пробой твердых диэлектриков
- •Лекция 10 Газообразные и жидкие диэлектрики
- •10.1. Газообразные диэлектрики.
- •10.1.1. Основные характеристики.
- •10.1.2. Электроотрицательные газы, применение газообразных диэлектриков.
- •10. 2. Жидкие диэлектрики.
- •10.2.1. Общие свойства.
- •10.2.2. Используемые и перспективные жидкие диэлектрики.
- •Лекция 11 твердые диэлектрики
- •11.1. Общие характеристики твердых диэлектриков.
- •11.2. Виды диэлектриков. Применение твердых диэлектриков в энергетике.
- •11.3. Свойства наиболее применяемых диэлектриков.
- •11.3.1. Полимерные материалы.
- •11.3.2. Бумага и картон.
- •11.3.3. Материалы для изоляторов.
- •11.3.4. Слюдяные материалы.
- •Лекция 12 Магнитные материалы
- •12.1. Общие характеристики магнитных материалов. Определения. Кривая намагничивания, гистерезис, индукция насыщения, коэрцитивная сила. Магнитомягкие и магнитотвердые материалы. Магнитные потери.
- •12.2. Виды магнитных материалов. Применение магнитных материалов в энергетике. Свойства наиболее применяемых материалов. Электротехнические стали. Ферриты. Магнитодиэлектрики.
- •12.1. Общие характеристики магнитных материалов.
- •12.2. Виды магнитных материалов. Применение магнитных материалов в энергетике. Свойства наиболее применяемых материалов. Электротехнические стали. Ферриты. Магнитодиэлектрики.
- •Лекция 13 Сверхпроводящие материалы
- •13.2. Низкотемпературные сверхпроводники.
- •13.3. Сверхпроводящая керамика.
- •13.1. Принцип сверхпроводимости. Влияние магнитного поля
- •13.2. Низкотемпературные сверхпроводники
- •13.3. Сверхпроводящая керамика
- •Лекция 14 Долговечность и старение материалов в условиях воздействующих факторов
- •14.1. Природные факторы старения.
- •14.2. Техногенные факторы старения.
- •14.3. Коррозия металлов и композитов. Электрокоррозия. Защита от коррозии.
- •14.1. Природные факторы старения
- •14.2. Техногенные факторы старения.
- •14.3. Коррозия материалов.
- •Медь свинец сталь в бетоне сталь в грунте алюминий цинк.
- •Лекция 15 Испытания материалов
- •15.1. Подготовка образцов и условия испытаний
- •15.2. Поддержание и контроль условий испытания.
- •15.3. Электрические испытания.
- •15.3.1. Определение общих и удельных сопротивлений образцов.
- •15.3.2. Определение диэлектрической проницаемости и тангенса угла диэлектрических потерь на низких частотах.
- •15.3.3. Определение электрической прочности.
- •15.3.4. Определение стойкости к внешним электрическим воздействиям.
- •15.3.5. Определение параметров статической электризации.
- •15.4. Тепловые испытания.
- •15.5. Механические испытания.
- •Методические указания для студентов по дисциплине «Материаловедение»
- •Требования к оформлению контрольной работы
- •Правила техники безопасности при проведении лабораторных работ
- •«Исследование ферромагнитных материалов»
- •Основные положения и соотношения:
- •Порядок выполнения работы:
- •Часть 1. Экспериментальное определение вах катушки индуктивности с замкнутым магнитопроводом
- •Часть 2. Расчетное определение параметров кривой намагничивания ферромагнитного материала сердечника катушки индуктивности с учетом параметров магнитопровода
15.5. Механические испытания.
Основные механические испытания - это определение прочностных характеристик, т.е. способности выдерживать внешние механические нагрузки без недопустимых изменений первоначальных размеров и формы. По характеру приложения нагрузки испытания делятся на статические, с плавным ростом нагрузки с требуемой скоростью и динамические, когда нагрузка воздействует в виде рывка, удара.
При статических испытаниях определяют разрушающее напряжение при растяжении, сжатии или изгибе, предел текучести, относительное удлинение при разрыве и относительную деформацию при сжатии, модуль упругости и др. При динамических испытаниях - ударную вязкость и стойкость к вибрации. Определяются твердость, гибкость, пластичность.
Следующие типы испытаний:
на растяжение пластмасс, керамики, цемента (двусторонние лопатки),
пластмасс и слоистых пластиков на сжатие (призмы, цилиндры),
пластмасс на раскалывание,
пленок на разрыв,
пластмасс на статический изгиб (брусок лежит на двух опорах и нагружен в середине).
Ударная вязкость пластмасс по Шарпи и т.д. определяется с помощью маятниковых копров. Производят с помощью тяжелого маятника с бойком. После разлома образца маятник поднимается до какой-то точки. По разности первоначального положения и конечного находят энергию удара, затраченную на разрушение. Ударная вязкость - отношение энергии удара к площади поперечного сечения образца.
Твердость определяется несколькими способами:
Метод Бринелля - вдавливается шарик при определенной нагрузке. Чем больше диаметр отпечатка - тем меньше твердость. По значению измеренного диаметра отпечатка с использованием выражения определяется значение твердости по Бринелю.
Несколько другой способ реализован в методе Роквелла. Здесь производится вдавливание конусной иглы (индентора) при определенной нагрузке и по значению смещения индентора (это характеризует глубину), определяется твердость по Роквеллу.
Еще один популярный способ основан на царапанье более твердого материала менее твердым. Тем самым определяется относительная твердость материалов. Сравнение с рядом эталонных материалов, которым присвоены номера твердости по Моосу, (алмаз -10, корунд - 9, кварцит - 7, известняк - 3 и т.д.) позволяет получить и количественную характеристику.
Твердость пленок определяют маятниковым методом - на пленку ставится маятник, чем тверже материал, тем дольше маятник качается.
Помимо вышеиздлженных, упомянем методы определения гибкости - число перегибов тонкого материала, вызывающих его разрушение.
Методические указания для студентов по дисциплине «Материаловедение»
При изучении курса студенты знакомятся с разделами: диэлектрики, проводники, полупроводники и магнитные материалы. Изучение теоретической части разделов сопровождается решением задач. Приведен пример решения задачи по разделу: диэлектрики.
К диэлектрику прямоугольной формы
размерами a и b
и высотой h приложено
постоянное напряжение U=1000
В. Напряжение подводится к противоположным
граням a и b,
покрытым слоями металла. Известны
размеры диэлектрика: а=200 мм, b=100
мм, h = 2 мм, Удельное
объёмное сопротивление
и удельное поверхностное сопротивление
.
Требуется определить ток утечки, мощность потерь и удельные диэлектрические потери.
Решение. Ток утечки протекает как через объём диэлектрика, так и по поверхностям четырёх боковых граней (через две грани a и через две грани b). Поэтому сопротивление между электродами определяется параллельным соединением объёмного и поверхностного сопротивлений. Объёмное сопротивление равно:
Поверхностное сопротивлении равно:
Полное сопротивление изоляции равно:
Ток утечки:
Мощность потерь:
Удельные диэлектрические потери:
