
- •Автор-составитель: ручкина любовь григорьевна канд. Техн. Наук, доцент кафедры ЭиЭ
- •1. Цель и задачи дисциплины
- •2. Содержание дисциплины
- •Введение
- •Общие сведения о строении вещества
- •Диэлектрики
- •2.4. Проводниковые и сверхпроводниковые материалы
- •2.5. Полупроводниковые материалы
- •2.6. Магнитные материалы
- •Перечень тем лекционных занятий Примерный объем в часах
- •5. Информационно-методическое обеспечение дисциплины
- •5.1. Основная
- •5.2. Дополнительная
- •6. Краткие методические рекомендации к самостоятельной работе
- •190401 – Электроснабжение железных дорог (энс)
- •190402 – Автоматика, телемеханика и связь на железнодорожном транспорте (атс)
- •1.1. Что такое материал, материаловедение, электротехническое материаловедение.
- •1.2. Роль материалов в современной технике.
- •1.3. Основные типы материалов, применяемых в энергетике и электротехнике, композиционные материалы.
- •1.1. Что такое материал, материаловедение, электротехническое материаловедение.
- •1.2. Роль материалов в современной технике, в частности в энергетике.
- •1.3. Основные типы материалов, применяемых в энергетике и электротехнике, композиционные материалы.
- •Характеристики композиционных материалов
- •Лекция 2 Электрофизические характеристики материалов. Электропроводность.
- •2.1. Основное уравнение электропроводности.
- •2.2. Электропроводность проводников, полупроводников и диэлектриков
- •2.3. Проводимость жидких диэлектриков и электролитов.
- •2.1. Основное уравнение электропроводности.
- •2.2. Электропроводность проводников, полупроводников и диэлектриков.
- •2.3. Проводимость жидкостей и электролитов.
- •Лекция 3 Электрофизические характеристики материалов. Диэлектрическая и магнитная проницаемости.
- •3.1. Диэлектрическая проницаемость и электрические поля в диэлектриках.
- •3.2.. Магнитная проницаемость и магнитные поля.
- •3.1. Диэлектрическая проницаемость материалов.
- •Лекция 4 Теплофизические и механические характеристики материалов.
- •4.1. Понятие температуры. Характерные температуры (плавления, кипения, Кюри, и т.П.) Температуростойкость материалов. Теплостойкость материалов.
- •4.2. Теплоемкость, теплопроводность, температурные коэффициенты материалов.
- •4.3. Механические свойства материалов. Удлинение, деформация, модуль упругости. Разрушающие напряжения при различных видах нагрузки.
- •4.1. Понятие температуры. Характерные температуры (плавления, кипения, Кюри, и т.П.) Температуростойкость материалов. Теплостойкость материалов.
- •4.2. Теплоемкость, теплопроводность, температурные коэффициенты материалов.
- •4.3. Механические свойства материалов. Удлинение, деформация, модуль упругости. Разрушающие напряжения при различных видах нагрузки.
- •Лекция 5 Конструкционные материалы.
- •5.1. Общие свойства конструкционных материалов.
- •5.2. Конструкционные стали.
- •5.3. Цветные металлы и сплавы.
- •5.4. Бетон. Железобетон.
- •Лекция 6 Проводниковые материалы
- •6.1. Общие свойства проводников. Температурный коэффициент сопротивления, потери, нагрев проводников.
- •6.2. Материалы для проводов. Медь, алюминий.
- •6.3. Материалы для контактов.
- •6.4. Материалы с малым температурным коэффициентом сопротивления. Материалы для термопар.
- •Лекция 7 Слабопроводящие материалы
- •7.1. Электропроводность полупроводников и слабопроводящих материалов.
- •7.2. Резистивные материалы. Углеродные композиты, бетэл, эком, электропроводящие полимеры.
- •7.3. Материалы с нелинейной проводимостью. Оцк, позисторная керамика , силит, вилит.
- •7.1. Электропроводность полупроводников и слабопроводящих материалов.
- •7.2. Резистивные материалы. Углеродные композиты, бетэл, эком, электропроводящие полимеры.
- •7.2.1 Металлические резистивные материалы
- •7.2.2. Графит. Бетэл
- •7.2.3 Материал «эком» для резисторов и обогревателей
- •7.2.4. Электропроводящие полимеры
- •7.3. Материалы с нелинейной проводимостью. Оцк, силит, вилит.
- •Лекция 8 Электропроводность и потери в диэлектриках
- •8.1. Диэлектрическое и резистивное состояние вещества.
- •8.2. Особенности электропроводности для различных агрегатных состояний.
- •8.3. Проводимость неоднородных диэлектриков.
- •8.4. Диэлектрические потери.
- •Лекция 9 Процессы в диэлектриках под действием сильных электрических полей
- •9.1. Элементарные процессы в газах. Лавина, стример, лидер.
- •9.2. Пробой в жидкостях. Эмпирические зависимости электрической прочности. Роль газовых пузырьков.
- •9.3. Пробой твердых диэлектриков. Электрический пробой. Тепловой пробой. Частичные разряды.
- •9.1. Элементарные процессы в газе. Лавина, стример, лидер.
- •9.2. Пробой жидкостей
- •Закономерности импульсного пробоя жидкости
- •9.3. Электрический пробой твердых диэлектриков
- •Лекция 10 Газообразные и жидкие диэлектрики
- •10.1. Газообразные диэлектрики.
- •10.1.1. Основные характеристики.
- •10.1.2. Электроотрицательные газы, применение газообразных диэлектриков.
- •10. 2. Жидкие диэлектрики.
- •10.2.1. Общие свойства.
- •10.2.2. Используемые и перспективные жидкие диэлектрики.
- •Лекция 11 твердые диэлектрики
- •11.1. Общие характеристики твердых диэлектриков.
- •11.2. Виды диэлектриков. Применение твердых диэлектриков в энергетике.
- •11.3. Свойства наиболее применяемых диэлектриков.
- •11.3.1. Полимерные материалы.
- •11.3.2. Бумага и картон.
- •11.3.3. Материалы для изоляторов.
- •11.3.4. Слюдяные материалы.
- •Лекция 12 Магнитные материалы
- •12.1. Общие характеристики магнитных материалов. Определения. Кривая намагничивания, гистерезис, индукция насыщения, коэрцитивная сила. Магнитомягкие и магнитотвердые материалы. Магнитные потери.
- •12.2. Виды магнитных материалов. Применение магнитных материалов в энергетике. Свойства наиболее применяемых материалов. Электротехнические стали. Ферриты. Магнитодиэлектрики.
- •12.1. Общие характеристики магнитных материалов.
- •12.2. Виды магнитных материалов. Применение магнитных материалов в энергетике. Свойства наиболее применяемых материалов. Электротехнические стали. Ферриты. Магнитодиэлектрики.
- •Лекция 13 Сверхпроводящие материалы
- •13.2. Низкотемпературные сверхпроводники.
- •13.3. Сверхпроводящая керамика.
- •13.1. Принцип сверхпроводимости. Влияние магнитного поля
- •13.2. Низкотемпературные сверхпроводники
- •13.3. Сверхпроводящая керамика
- •Лекция 14 Долговечность и старение материалов в условиях воздействующих факторов
- •14.1. Природные факторы старения.
- •14.2. Техногенные факторы старения.
- •14.3. Коррозия металлов и композитов. Электрокоррозия. Защита от коррозии.
- •14.1. Природные факторы старения
- •14.2. Техногенные факторы старения.
- •14.3. Коррозия материалов.
- •Медь свинец сталь в бетоне сталь в грунте алюминий цинк.
- •Лекция 15 Испытания материалов
- •15.1. Подготовка образцов и условия испытаний
- •15.2. Поддержание и контроль условий испытания.
- •15.3. Электрические испытания.
- •15.3.1. Определение общих и удельных сопротивлений образцов.
- •15.3.2. Определение диэлектрической проницаемости и тангенса угла диэлектрических потерь на низких частотах.
- •15.3.3. Определение электрической прочности.
- •15.3.4. Определение стойкости к внешним электрическим воздействиям.
- •15.3.5. Определение параметров статической электризации.
- •15.4. Тепловые испытания.
- •15.5. Механические испытания.
- •Методические указания для студентов по дисциплине «Материаловедение»
- •Требования к оформлению контрольной работы
- •Правила техники безопасности при проведении лабораторных работ
- •«Исследование ферромагнитных материалов»
- •Основные положения и соотношения:
- •Порядок выполнения работы:
- •Часть 1. Экспериментальное определение вах катушки индуктивности с замкнутым магнитопроводом
- •Часть 2. Расчетное определение параметров кривой намагничивания ферромагнитного материала сердечника катушки индуктивности с учетом параметров магнитопровода
15.3.4. Определение стойкости к внешним электрическим воздействиям.
Определение дугостойкости электроизоляционных материалов. Под дугостойкостью понимают способность диэлектрика выдерживать воздействие электрической дуги без недопустимого ухудшения его свойств.
Различают стойкость электроизоляционных материалов к действию эл-й дуги при высоком (свыше 1000 В) переменном напряжении и малых токах и при воздействии дуги, создаваемой постоянным напряжением до 1000 В. Существующие методы испытаний не дают возможности распространить результаты испытаний, проводимых в условиях лабораторий, на рабочие условия применения материалов при наличии грязи, пыли, влаги. Выбор метода испытаний зависит от особенностей испытуемого материала, его назначения и т.д.
Определение стойкости к воздействию электрической дуги напряжения переменного тока.
Вследствие шунтирования воздушного промежутка перемычкой дуга гаснет. Т.о. момент появления перемычки фиксируется по погасанию дуги. Параметрами дугостойкости является в данном случае ток Iд и время tд, необходимое для образования перемычки. Толщина образцов не менее 3 мм. Напряжение на электродах 12,5 кВ при токе от 10 до 100 мА.
Определение стойкости к действию электрической дуги напряжения постоянного тока.
Эту характеристику принято характеризовать качественно. Воздействуют дугой напряжением 220 В между электродами. Дуга возбуждается между двумя неомедненными угольными электродами. После подачи напряжения электроды раздвигают до 20 мм, снимают напряжение, через 1 мин подают напряжение и проверяют существование проводящей перемычки. Материал относят к одному из 6 классов.
Определение характеристик короностойкости.
Параметры для сравнительной оценки материалов в условиях короны: Ua - минимальное напряжение, при котором наблюдается корона, Uкор - напряжение, при котором процесс заканчивается пробоем образца через определенное время tкор. Сущность метода - прикладывают напряжение, достаточное для возникновения короны и выдерживают его до пробоя образца.
Определение характеристик трекингостойкости.
Повреждение поверхности вследствие поверхностного пробоя, вызывающее образование проводящих следов, называют трекингом диэлектрика., а способность выдерживать поверхностные пробои без трекинга - трекингостойкостью. Трекинг возникает при наличии загрязнений на поверхности материала. Влага под воздействием тока испаряется неравномерно, где проводящая пленка обрывается, возникает искра, вызывая образование проводящих каналов - треков.
Применяют методы каплепадения, стекающей пленки жидкости, метод пыли и тумана.
Определение параметров воздействия внутренних частичных разрядов.
ЧР возникают в местах с пониженной электроизоляционной стойкостью, например, в газовых включениях. Длительное воздействие ЧР может привести к пробою изоляции. Также является параметром качества материала. Для оценки вводятся характеристики интенсивности единичного ЧР (кажущийся заряд qчр, энергия единичного ЧР) и интенсивность ЧР в течении определенного интервала времени. Каждый ЧР вызывает кратковременное изменение напряжения на электродах. Кажущийся заряд численно равен такому заряду, который будучи мгновенно введенным между выводами объекта, вызовет такое же мгновенное изменение напряжения, как и реальный ЧР. Выражается в кулонах.
Энергия единичного ЧР:
Wчр = qчр Uчр.
Напряжение, при котором возникают начальные ЧР, называется начальным.
При дальнейшем увеличении напряжения в определенный момент интенсивность ЧР резко возрастает из-за изменения структуры диэлектрика (образование дендрита в твердом диэлектрике, пузырьков газа в пропитанной изоляции). Такие ЧР называются критическими и соответственно напряжение - критическим.
Средний ток I чр - сумма абсолютных значений кажущихся зарядов за одну секунду.
Большое распространение получили электрические методы определения ЧР - косвенные и прямые.
Один из косвенных методов определения ЧР - снятие зависимости tgd от приложенного напряжения. Если кривая не растет - нет ЧР, растет до какого-то уровня и не увеличивается - локальные включения, не увеличивающиеся с ростом напряжения, растет - количество включений увеличивается до пробоя.
Прямой метод регистрации ВЧ колебаний в цепи при возникновении ЧР.
Существуют поверхностные ЧР (около острых краев электродов). В литературе часто их называют коронным разрядом.