- •Часть I
- •Глава 1
- •1.1. Цвет и объекты, изучаемые теорией цвета
- •1.2. Природа цветового ощущения
- •Глава 2
- •2.1. Общие сведения о зрительном аппарате
- •2.2. Глаз как воспроизводящая система
- •2.2.1. Световая и спектральная чувствительность глаза
- •2.2.2. Адаптация
- •2.1. Освещенность в различных условиях освещения
- •2.2.3. Зрительная инерция
- •2.3. Основы теории цветового зрения
- •2.3.1. Общие сведения
- •2.2. Ординаты кривых основных возбуждений
- •2.3.2. Субъективные характеристики цвета
- •Глава 3 психология цвета
- •3.1. Закономерности восприятия цвета 3.1.1. Пороги восприятия
- •3.1.2. Восприятие яркости
- •3.1.3. Восприятие цветности
- •3.2. Влияние внешних условий на восприятие цвета
- •3.2.1. Восприятие цвета при разных уровнях яркости
- •3.2.2. Эффекты зрительного контраста
- •3.2.3. Влияние непрямых раздражений
- •3.3. Расстройства цветового зрения
- •Глава 4
- •4.1. Сложение цветов
- •4.2. Аддитивный синтез цвета
- •4.3. Идеальный субтрактивный синтез
- •Часть II измерение цвета
- •Глава 5
- •5.1. Принципы измерения цвета
- •5.2. Колориметрические системы
- •5.2.1. Система rgb
- •5.2.2. Система xyz
- •5.2.3. Переход от одной системы цветовых координат к другой
- •5.4. Расчет цветовых координат
- •5.4.3. Примеры расчета
- •Глава 6
- •6.1. Векторное представление цвета
- •6.1.1. Цветовое пространство
- •6.1.2. Особые плоскости и линии цветового пространства rgb
- •6.2. Выражение цветности
- •6.2.1. Свойства цветового треугольника
- •6.2.2. Диаграмма rg
- •6.1. Международно принятые функции сложения цветов
- •6.3. Аффинные свойства цветового пространства
- •Глава 7
- •7.1. Требования к основным цветам xyz
- •7.2. Нереальные цвета
- •7.4. Особые плоскости в цветовом пространстве xyz и цветовая диаграмма ху
- •Глава 8
- •8.1. Пороговые эллипсы на графике ху
- •8.2. Равноконтрастная система мко-60
- •8.3. Равноконтрастная система мко-64
- •Глава 9
- •9.1. Общие сведения
- •9.2. Нормализация условия освещения и наблюдения
- •9.3. Приборы для спектрофотометрических измерений
- •9.3.1. Измерение спектров
- •9.3.2. Устройства и детали спектральных приборов
- •9.3.3. Спектрофотометр сф-18
- •9.4. Колориметры
- •9.4.1. Принцип действия фотоэлектрических колориметров
- •9.4.2. Фотоэлектрический колориметр кно-3
- •9.5. Компаратор цвета экц-1
- •Глава 10
- •10.1. Цветовой круг и цветовое тело
- •10.2. Система оствальда
- •10.1. Буквенные обозначения цветов в системе Оствальда
- •10.4. Система рабкина
- •10.5. Система смешения красок «радуга»
- •Часть III
- •Глава 11
- •11.1. Принципы воспроизведения цветов объекта
- •11.2. Стадии процесса цветовоспроизведения
- •11.3. Пример идеального процесса
- •11.5. Требования к цветоделительным светофильтрам
- •Глава 12
- •12.1. Осложнения, связанные с распределением поглощения реальных красок по спектру
- •12.1.1. Триада реальных красок
- •12.1.2. Зональные поглощения реальных красок
- •12.1.4. Примеры синтеза цветов и цветовой корректуры
- •12.1. Зональные плотности реальных красок
- •12.2. Характеристики цветов репродукции и оригинала
- •12.1.5. Способы цветовой корректуры
- •Глава 13
- •13.1. Общие сведения
- •13.2. Условие независимости от спектрального состава
- •13.3. Воспроизведение однокрасочных наложений
- •13.3.1. Цветоделение дубликата и синтез репродукции
- •13.4. Шкала охвата 13.4.1. Строение шкалы
- •13.4.2. Цветоделенные негативы шкалы
- •13.5. Полоса цветоделения
- •13.6. Мера количества краски
- •13.7. Уравнения цветовоспроизведения и цветоделения
- •Глава 14
- •14.1. Требования к маскам и классификация методов маскирования
- •14.2. Контактное маскирование негатива 14.2.1. Перекрестное маскирование
- •14.3. Проекционное маскирование оригинала
- •14,4. Внутреннее маскирование цветного негатива
- •14.4.2. Внутреннее маскирование цветных негативов
- •14.5. Контактное маскирование слайдов 14.5.1. Маскирование единой цветной маской
- •14.5.2. Маскирование единой черно-белой маской
- •14.6. Расчет масок
- •Часть IV
- •Глава 15 однокрасочное растровое изображение
- •15.1. Общие сведения о растровом воспроизведении
- •15.2. Фотометрия растрового изображения
- •15.2.2. Растровые величины
- •15.2.3. Интегральные (визуальные) величины
- •15.3. Зависимость между интегральными и растровыми величинами
- •15.3.1. Формула Шеберстова—Муррея—Девиса
- •15.3.2. Эффект Юла—Нилсена
- •18.1. Синтез цвета при полиграфическом воспроизведении
- •16.1.1. Муар
- •16.1.2. Автотипный синтез цвета
- •16.2. Градационный процесс полиграфического воспроизведения
- •Часть I. Цвет и его свойства
- •Глава 1. Основные сведения о цвете............ 3
- •Глава 2. Зрительный аппарат и цветовое зрение...... 7
- •Глава 3. Психология цвета............... 27
- •Глава 4. Синтез цвета.................. 46
- •Глава 5. Основы метрологии цвета........... 61
- •Глава 10. Системы спецификации (систематизация цветов) 129
- •Глава 11. Идеальный процесс цветовоспроизведения .... 144
- •Глава 12. Реальный субтрактивный синтез........161
- •Глава 13. Начала дубликационной теории........178
- •Глава 14. Цветокорректирующее маскирование.....211
- •Часть IV. Воспроизведение цветных оригиналов в полиграфии.................241
- •Глава 15. Однокрасочное растровое изображение.....241
- •Глава 16. Многокрасочное растровое изображение.....250
2.2.2. Адаптация
К свойствам, характеризующим воспроизводящую систему, мы отнесли степень постоянства ее чувствительности.
Чувствительность (световая, спектральная, контрастная и др.) зрительной системы не постоянна, а зависит от ряда факторов, из которых существенное значение имеет уровень освещенности.
Как видно из табл. 2.1, глаз сохраняет чувствительность при разных условиях освещения. Освещенность пейзажа, например при летнем солнце, в 4000 раз больше освещенности, создаваемой в комнате 100-ваттной лампой. Между тем глаз в обоих случаях хорошо различает детали объектов. Человек вполне удовлетворительно видит при освещенности в 1 лк, создаваемой ночью уличными фонарями, т. е. при освещенности в 100 000 раз меньшей, чем при ярком солнце. Глаз дает множество сведений и в полнолуние, когда освещенность почти в 1 000 000 раз ниже, чем при солнце. В безлунную ночь при свете звезд зрение позволяет человеку ориентироваться, хотя освещенность при этом в сотни мил-
лионов раз ниже, чем при открытом солнце.
Ширина диапазона мощностей видимых излучений, могу
щих возбуждать световое ощущение, объясняэться способ-
2.1. Освещенность в различных условиях освещения
Условия освещения |
Среднее значение освещенности, лк |
Земная поверхность ночью в полнолуние То же в сумерках в летний день в тени в летний день на солнце в летний день при сплошной облачности Пол комнаты под лампой накаливания мощностью 100 Вт, висящей на высоте 3 м Тротуар под уличным фонарем Стол, освещаемый настольной лампой мощностью 100 Вт |
0,2 1—500 6000 — 15 000 50000—120000 5000—25 000 20—30 1 — 6 80—200 |
ностью глаза приспосабливаться к разным уровням яркостей, настраиваться на ее средний уровень. Процесс приспосабливания глаза к изменению условий освещения вообще называется адаптацией (лат. adapto — приспосабливаю). Выше рассматривались примеры яркостной адаптации. Кроме яркостной известна цветовая адаптация. Она состоит в том, что под влиянием предшествующего светового освещения, цветовое восприятие изменяется. Если, например, облучить сетчатку насыщенным красным, то белое поле в течение времени адаптации видится зеленым.
Изменение чувствительности глаза во времени, или, как говорят, кинетика яркостной адаптации, показано на рис. 2.6. Процесс увеличения чувствительности при переходе от большой яркости к малой называется темновой адаптацией (рис. 2.6, а), если глаз приспосабливается к большой яркости, — световой адаптацией. Из рисунка видно, что изменение чувствительности глаза продолжается довольно длительное время. Для темновой адаптации это 40—60 мин. Скорость световой адаптации зависит от яркости, на которую адаптируется глаз. Чувствительность падает тем быстрее, чем выше эта яркость. К большой яркости наблюдатель привыкает за 4—8 мин.
В основе яркостной адаптации лежат разные механизмы. Один из них называется зрачковым рефлексом. О нем уже упоминалось в разделе 2.1. При уменьшении освещенности диаметр зрачка увеличивается от 2 мм на ярком свету до 10 мм в полутьме. Световой поток, поступающий в глаз, возрастает при этом в 25 раз, т. е. пропорционально
площади зрачка. Соответственно этому увеличивается и чувствительность.
Более мощный механизм адаптации заключается в двойственности световоспринимающей системы глаза. Палочки позволяют отличить белую поверхность от черной при освещенности 10-6 лк, если глаз адаптирован к такой низкой освещенности. Чувствительность же колбочек гораздо ниже.
По мере роста освещенности палочковый механизм постепенно выключается. При освещенностях выше 10-2 лк зрение становится чисто колбочковым.
Рис. 2.6. Кинетика яркостной адаптации:
а — темновая адаптация (1 — адаптации предшествовала большая яркость; 2 — малая предадаптационная яркость); б — световая адаптация; цифры над кривыми указывают предадаптационные яркости в кд • м-2
Механизм цветовой адаптации заключается в уменьшении концентрации зрительного пигмента в тех колбочках, которые особенно интенсивно работают при предадаптационном освещении. Так, в приведенном выше примере цветовой адаптации происходит уменьшение концентрации пигмента в красночувствительных рецепторах. Вследствие этого при рассматривании белого поля будут работать главным образом зеленочувствительные и синечувствительные колбочки и глаз получит ощущение зелено-голубого.
Установившийся и неустановившийся зрительный процесс. Чувствительность глаза, как это видно из рис. 2.6, изменяется в процессе яркостной адаптации. В процессе цветовой адаптации изменяется цветовая чувствительность глаза. Зрительный процесс в условиях изменяющейся чувствительности называется неустановившимся. В момент окончания адаптации чувствительность глаза становится постоянной, зрительный процесс при этом носит название установившегося.
Все цветовые измерения и исследования проводятся в условиях установившегося зрения (если, конечно, не изучается сам адаптационный процесс). Поэтому весь дальнейший материал относится к случаям, когда адаптация закончена.
