- •Часть I
- •Глава 1
- •1.1. Цвет и объекты, изучаемые теорией цвета
- •1.2. Природа цветового ощущения
- •Глава 2
- •2.1. Общие сведения о зрительном аппарате
- •2.2. Глаз как воспроизводящая система
- •2.2.1. Световая и спектральная чувствительность глаза
- •2.2.2. Адаптация
- •2.1. Освещенность в различных условиях освещения
- •2.2.3. Зрительная инерция
- •2.3. Основы теории цветового зрения
- •2.3.1. Общие сведения
- •2.2. Ординаты кривых основных возбуждений
- •2.3.2. Субъективные характеристики цвета
- •Глава 3 психология цвета
- •3.1. Закономерности восприятия цвета 3.1.1. Пороги восприятия
- •3.1.2. Восприятие яркости
- •3.1.3. Восприятие цветности
- •3.2. Влияние внешних условий на восприятие цвета
- •3.2.1. Восприятие цвета при разных уровнях яркости
- •3.2.2. Эффекты зрительного контраста
- •3.2.3. Влияние непрямых раздражений
- •3.3. Расстройства цветового зрения
- •Глава 4
- •4.1. Сложение цветов
- •4.2. Аддитивный синтез цвета
- •4.3. Идеальный субтрактивный синтез
- •Часть II измерение цвета
- •Глава 5
- •5.1. Принципы измерения цвета
- •5.2. Колориметрические системы
- •5.2.1. Система rgb
- •5.2.2. Система xyz
- •5.2.3. Переход от одной системы цветовых координат к другой
- •5.4. Расчет цветовых координат
- •5.4.3. Примеры расчета
- •Глава 6
- •6.1. Векторное представление цвета
- •6.1.1. Цветовое пространство
- •6.1.2. Особые плоскости и линии цветового пространства rgb
- •6.2. Выражение цветности
- •6.2.1. Свойства цветового треугольника
- •6.2.2. Диаграмма rg
- •6.1. Международно принятые функции сложения цветов
- •6.3. Аффинные свойства цветового пространства
- •Глава 7
- •7.1. Требования к основным цветам xyz
- •7.2. Нереальные цвета
- •7.4. Особые плоскости в цветовом пространстве xyz и цветовая диаграмма ху
- •Глава 8
- •8.1. Пороговые эллипсы на графике ху
- •8.2. Равноконтрастная система мко-60
- •8.3. Равноконтрастная система мко-64
- •Глава 9
- •9.1. Общие сведения
- •9.2. Нормализация условия освещения и наблюдения
- •9.3. Приборы для спектрофотометрических измерений
- •9.3.1. Измерение спектров
- •9.3.2. Устройства и детали спектральных приборов
- •9.3.3. Спектрофотометр сф-18
- •9.4. Колориметры
- •9.4.1. Принцип действия фотоэлектрических колориметров
- •9.4.2. Фотоэлектрический колориметр кно-3
- •9.5. Компаратор цвета экц-1
- •Глава 10
- •10.1. Цветовой круг и цветовое тело
- •10.2. Система оствальда
- •10.1. Буквенные обозначения цветов в системе Оствальда
- •10.4. Система рабкина
- •10.5. Система смешения красок «радуга»
- •Часть III
- •Глава 11
- •11.1. Принципы воспроизведения цветов объекта
- •11.2. Стадии процесса цветовоспроизведения
- •11.3. Пример идеального процесса
- •11.5. Требования к цветоделительным светофильтрам
- •Глава 12
- •12.1. Осложнения, связанные с распределением поглощения реальных красок по спектру
- •12.1.1. Триада реальных красок
- •12.1.2. Зональные поглощения реальных красок
- •12.1.4. Примеры синтеза цветов и цветовой корректуры
- •12.1. Зональные плотности реальных красок
- •12.2. Характеристики цветов репродукции и оригинала
- •12.1.5. Способы цветовой корректуры
- •Глава 13
- •13.1. Общие сведения
- •13.2. Условие независимости от спектрального состава
- •13.3. Воспроизведение однокрасочных наложений
- •13.3.1. Цветоделение дубликата и синтез репродукции
- •13.4. Шкала охвата 13.4.1. Строение шкалы
- •13.4.2. Цветоделенные негативы шкалы
- •13.5. Полоса цветоделения
- •13.6. Мера количества краски
- •13.7. Уравнения цветовоспроизведения и цветоделения
- •Глава 14
- •14.1. Требования к маскам и классификация методов маскирования
- •14.2. Контактное маскирование негатива 14.2.1. Перекрестное маскирование
- •14.3. Проекционное маскирование оригинала
- •14,4. Внутреннее маскирование цветного негатива
- •14.4.2. Внутреннее маскирование цветных негативов
- •14.5. Контактное маскирование слайдов 14.5.1. Маскирование единой цветной маской
- •14.5.2. Маскирование единой черно-белой маской
- •14.6. Расчет масок
- •Часть IV
- •Глава 15 однокрасочное растровое изображение
- •15.1. Общие сведения о растровом воспроизведении
- •15.2. Фотометрия растрового изображения
- •15.2.2. Растровые величины
- •15.2.3. Интегральные (визуальные) величины
- •15.3. Зависимость между интегральными и растровыми величинами
- •15.3.1. Формула Шеберстова—Муррея—Девиса
- •15.3.2. Эффект Юла—Нилсена
- •18.1. Синтез цвета при полиграфическом воспроизведении
- •16.1.1. Муар
- •16.1.2. Автотипный синтез цвета
- •16.2. Градационный процесс полиграфического воспроизведения
- •Часть I. Цвет и его свойства
- •Глава 1. Основные сведения о цвете............ 3
- •Глава 2. Зрительный аппарат и цветовое зрение...... 7
- •Глава 3. Психология цвета............... 27
- •Глава 4. Синтез цвета.................. 46
- •Глава 5. Основы метрологии цвета........... 61
- •Глава 10. Системы спецификации (систематизация цветов) 129
- •Глава 11. Идеальный процесс цветовоспроизведения .... 144
- •Глава 12. Реальный субтрактивный синтез........161
- •Глава 13. Начала дубликационной теории........178
- •Глава 14. Цветокорректирующее маскирование.....211
- •Часть IV. Воспроизведение цветных оригиналов в полиграфии.................241
- •Глава 15. Однокрасочное растровое изображение.....241
- •Глава 16. Многокрасочное растровое изображение.....250
Глава 2
ЗРИТЕЛЬНЫЙ АППАРАТ И ЦВЕТОВОЕ ЗРЕНИЕ
2.1. Общие сведения о зрительном аппарате
Орган зрения в целом состоит из трех отделов — периферического (собственно глаз), проводникового (зрительный нерв) и центрального (зрительная зона коры головного мозга в затылочной области).
Рассмотрим в общих чертах строение глаза, опуская детали, имеющие для теории цвета второстепенное значение.
Глазная линза — хрусталик — дает оптическое изображение наблюдаемого предмета, которое системой нервных окончаний, находящихся в одной из оболочек глаза, преобразуется в сигналы. Они по зрительному нерву передаются в затылочные доли головного мозга. В результате этого по неизвестным пока механизмам возникает зрительный образ предмета.
На рис. 2.1 схематически показан разрез глаза. Он представляет собой шарообразное тело, образованное несколькими оболочками. Внешняя /, называемая белковой оболочкой или склерой, состоит из сухожилий, непрозрачна и выполняет защитную роль. Спереди она переходит в прозрачную и более выпуклую оболочку 2 — роговую. Под склерой находится сосудистая оболочка 3, в которой заключены кровеносные сосуды, питающие глаз. К ней по внутренней стороне примыкает пигментный слой клеток (на рисунке совпадает с внутренним контуром разреза сосудистой оболочки). Клетки поглощают рассеянный свет. Пигментный слой предохраняет оптическое изображение, создаваемое глазной линзой — хрусталиком 6, от чрезмерного искажения рассеянным светом. Сосудистая оболочка спереди переходит в ресничное (цилиарное) тело 4, а затем — в радужную оболочку 5, или радужку, содержащую пигментные клетки. Пространство между хрусталиком 6 и роговой оболочкой (передняя камера 7) заполнено так называемой водя»истой влагой. Она преимущественно состоит из воды (99%), в которой растворены соли и белки. За хрусталиком находится стекловидное тело 8, также состоящее главным образом из воды.
Отверстие в центре радужки — зрачок — играет роль диафрагмы. При изменении светового потока, попадающего в глаз, площадь зрачка меняется: либо круговые мышцы радужки сужают его, либо радиальные расширяют. Эти реакции (зрачковый рефлекс) непроизвольны, и их роль заключается в предохранении светочувствительной оболочки глаза — сетчатки от чрезмерного раздражения при повышении освещенности. При ее снижении зрачковый рефлекс обеспечивает достаточную чувствительность оболочки.
Если в оптических приборах наводка на резкость осуществляется изменением расстояния от объектива до оптического изображения, то в органе зрения аналогичный процесс происходит путем изменения оптической силы хрусталика, определяемой кривизной его поверхностей. Кривизной управляют мышцы ресничного тела 4, находящегося в основании радужной оболочки. При сокращении круговых мышц уменьшается натяжение связок 9 хрусталика, называемых цинновыми. Тогда упругий хрусталик принимает естественную для него выпуклую форму, фокусное расстояние уменьшается и близкий предмет изображается резко. Если же предмет удален, круговые мышцы ресничного тела расслабляются, а радиальные сокращаются. В результате этого хрусталик становится менее выпуклым и его фокусное расстояние возрастает. Эти явления получили название аккомодации.
Сетчаткой (ретиной, или сетчатой оболочкой) называется внутренняя оболочка 10. Это — светочувствительный слой глаза. В сетчатке находятся нервные окончания (рецепторы) в которых происходят начальные преобразования лучистой энергии, приводящие в конце концов к возникновению светового ощущения.
Из глаза выходит зрительный нерв 11, по которому нервные импульсы, возникающие вследствие обратимого фотораспада веществ, находящихся в рецепторах, передаются в мозг. Место выхода зрительного нерва — слепое пятно 12—участок, не содержащий рецепторов.
Рис. 2.1. Схема строения глаза:
1 — склера; 2 — роговица; 3 — сосудистая оболочка; 4 — ресничное тело; 5 — радужная оболочка; 6 — хрусталик; 7 — передняя камера; 8 — стекловидное тело; 9 — цинно-вы связки; 10 — сетчатка; 11 — зрительный нерв; 12 — слепое пятно; 13 — желтое пятно; 14 — центральная ямка; I5 — зрительная ось; 16 — оптическая ось
Рис. 2.2. Схема строения сетчатки:
1, 2, 3 — слои нейронов; а — нервные волокна; б — синапсы; в — палочки; г — колбочки; д — пигментный эпителий; е — биполярные клетки; ж — ганглии
В сетчатке — три слоя нервных клеток (рис. 2.2) — нейронов /, 2, 3, связанных разветвлениями—синапсами б, обеспечивающими передачу электрического сигнала от одной клетки к другой. Нейроны, наиболее удаленные от внутренней поверхности сетчатки, оканчиваются рецепторами в и г. Они бывают двух типов: длинные и тонкие называются палочками (в), толстые и короткие — колбочками (г). Палочки обеспечивают черно-белое зрение, колбочки -как черно-белое, так и цветное. Шестиугольные по форме пигментные клетки (рис. 2.2) охватывают своими отростками рецепторы (на рисунке не показано).
Рецепторы передают сигнал через биполярные клетки е второго слоя ганглиям ж (скопления нервных волокон), от которых он попадает в зрительный нерв.
Наиболее важная с точки зрения цветовосприятия область сетчатки -- желтое пятно 13 (рис. 2.1), расположенное в центральной ее части. Оно окрашено желтым пигментом, предохраняющим рецепторы этой области от чрезмерного возбуждения коротковолновыми излучениями. Средняя часть 14 желтого пятна углублена и называется поэтому центральной ямкой. В середине центральной ямки находится область, содержащая только колбочки. Она имеет угловой размер около 2°, что соответствует площади меньше 1 мм2. Здесь насчитывается около 50 тыс. колбочек, очень близко расположенных друг к другу. Высокая поверхностная концентрация рецепторов обеспечивает большую разрешающую способность и цветовую чувствительность этого участка сетчатки.
При наблюдении детали предмета глаз ориентируется так, чтобы ее изображение упало на середину ямки. Такая ориентация обеспечивает наилучшее восприятие. Прямая, соединяющая центр ямки с наблюдаемой точкой предмета, как говорят, точкой фиксации взора, называется зрительной осью 15. При рассмотрении предмета в целом глаз движется. Он принимает разные положения, и оптические изображения деталей объекта, привлекающих внимание наблюдателя, поочередно проецируются на центральный участок ямки. Глаз «ощупывает» им наблюдаемый предмет. Вследствие подвижности глаза, наблюдатель не испытывает неудобств от того, что наиболее полезный участок сетчатки очень мал. В тех случаях, когда при исследованиях или измерениях хотят, чтобы работал только центральный участок ямки, угол зрения ограничивают соответствующим образом.
С удалением от средней части центральной ямки растет концентрация палочек и падает количество колбочек, приходящихся на единицу площади сетчатки. Изображение, образующееся на периферической ее части, не дает подробной информации об объекте. Оно позволяет лишь ориентироваться в пространстве.
Световая чувствительность палочек и колоочек резки различна. Палочки работают при низких освещенностях и выключаются при высоких. Эти рецепторы обеспечивают так называемое сумеречное зрение, когда освещенности невелики. В полутьме не различаются цвета, плохо видны детали. Это объясняется тем, что палочки располагаются на сетчатке значительно реже, чем колбочки, и разрешающая способность палочкового аппарата намного ниже - чем колбочкового. Однако в сумерках человек может ориентироваться, получая общее представление о предметах внешнего мира.
Колбочковое зрение называется дневным. При высоких освещенностях, когда начинают действовать колбочки, глаз различает цвета и мелкие детали объектов.
При некоторых средних освещенностях (так называемых промежуточных), когда яркости окружающих предметов находятся в пределах 0,01 — 10кд·м-2, палочки и колбочки работают совместно.
В результате светового возбуждения палочек или колбочек в мозг передаются электрические импульсы, частота которых увеличивается с ростом освещенности сетчатки. Импульсы достигают затылочных долей мозга, где возбуждают световые ощущения, из которых складывается зрительный образ объекта.
Причина возникновения импульсов состоит в фотодиссоциации светочувствительных пигментов, заключенных в рецепторах. Палочки содержат пигмент, называемый родопсином (или зрительным пурпуром), который в результате освещения обратимо распадается. Продуктами распада служат ионы белков — протеина и ретинена. По мере распада пигмента в палочках накапливается отрицательный заряд, и когда он достигает порогового значения, в нервном волокне возникает импульс, передаваемый в зрительную зону коры мозга. Частота импульсов растет с возрастанием освещенности сетчатки. После прекращения импульса происходит регенерация родопсина. Процесс этот идет при участии пигментного слоя д (рис. 2.2), в контакте с которым находятся палочки. Источником энергии, необходимой для протекания реакций, служит кислород, доставляемый кровью к тканям глаза.
Процессы, протекающие в колбочках, менее изучены, хотя несомненно, что их сущность также состоит в фотодиссоциации зрительного пигмента и возникновении электрических импульсов.
Со времени М. В. Ломоносова предполагалось, а в середине 20 века нашло экспериментальное подтверждение, что колбочки неодинаковы по спектральным свойствам, это позволяет разделить их на три группы. При возбуждении рецепторов первой группы возникает ощущение сине-фиолетового цвета. Рецепторы этой группы называются синечувствительными. Рецепторы второй группы ответственны за ощущение зеленого. Третья группа рецепторов обеспечивает ощущение красного. Реальные излучения раздражают колбочки сразу нескольких групп. Комбинация раздражений дает ощущения голубого, оранжевого и других цветов.
Р. Гранит экспериментально показал, что сетчатка животных дает три рода реакций. Экспериментатор удалял переднюю часть глаза кошки и тонкими (0,25 мкм) электродами касался разных участков обнаженной сетчатки глаза наркотизированного животного. Освещение сетчатки приводило к возникновению на электродах импульсов тока. Оказалось, что их величина и частота зависят от длины волны излучения и яркости света. В результате опытов были получены три кривые спектральной чувствительности, подтвердившие существование колбочек трех типов.
У. Раштону удалось доказать существование двух светочувствительных пигментов в колбочках. Возбуждающий ощущение зеленого был им назван хлоролабом («захватывающий зеленый»), красного — эритролабом («захватывающий красный»). По мнению исследователя, существует и третий пигмент — цианолаб («захватывающий синий»), световая диссоциация которого приводит к возникновению ощущения синего цвета.
Вопрос о механизме действия разных светочувствитель- ных пигментов не совсем ясен. Существует мнение, что при возбуждении колбочек возникают импульсы, частота которых зависит от спектральной чувствительности соответствующего рецептора. Соотношение частот импульсов определяет цветность излучения.
Важную роль в механизме зрения играют непроизвольные движения глаза. Он не бывает неподвижным даже, когда наблюдателю кажется, что взор фиксирован на определенной точке наблюдаемого предмета.
Схема движений глаза показана на рис. 2.3. На нем представлен участок сетчатки. В центре рисунка — кружок, заключающий оптическое изображение точки, на которой наблюдатель пытается фиксировать взор. Показаны все три типа перемещений глазного яблока при попытке фиксации взора: мелкое дрожание с частотой около 50 Гц и амплитудой, равной приблизительно половине диаметра колбочки,— тремор; перемещение глазного яблока в течение тремора — дрейф; скачкообразные движения (продолжительность, скачка около 20 мс) — саккады.
Если изображение на сетчатке искусственно сделать неподвижным, видимый образ бледнеет и, как правило, частично исчезает. Это объясняется тем. что светочувствительные вещества рецепторов, подвергаемые обратимому фотораспаду, в моменты перемещения восстанавливаются, а в моменты временной остановки движения (углы на рисунке) вновь распадаются под действием света, давая импульсы. Искус-
Рис. 2.3. Схема движений глаза:
I — дрейф; 2 — тремор; 3 — саккада; 4 — желаемое положение фиксации; 5 — граница фактических положений фиксации
ственная фиксация приводит к тому, что зрительные пигменты восстановиться не могут, что ведет к нарушению зрительного процесса.
