- •Часть I
- •Глава 1
- •1.1. Цвет и объекты, изучаемые теорией цвета
- •1.2. Природа цветового ощущения
- •Глава 2
- •2.1. Общие сведения о зрительном аппарате
- •2.2. Глаз как воспроизводящая система
- •2.2.1. Световая и спектральная чувствительность глаза
- •2.2.2. Адаптация
- •2.1. Освещенность в различных условиях освещения
- •2.2.3. Зрительная инерция
- •2.3. Основы теории цветового зрения
- •2.3.1. Общие сведения
- •2.2. Ординаты кривых основных возбуждений
- •2.3.2. Субъективные характеристики цвета
- •Глава 3 психология цвета
- •3.1. Закономерности восприятия цвета 3.1.1. Пороги восприятия
- •3.1.2. Восприятие яркости
- •3.1.3. Восприятие цветности
- •3.2. Влияние внешних условий на восприятие цвета
- •3.2.1. Восприятие цвета при разных уровнях яркости
- •3.2.2. Эффекты зрительного контраста
- •3.2.3. Влияние непрямых раздражений
- •3.3. Расстройства цветового зрения
- •Глава 4
- •4.1. Сложение цветов
- •4.2. Аддитивный синтез цвета
- •4.3. Идеальный субтрактивный синтез
- •Часть II измерение цвета
- •Глава 5
- •5.1. Принципы измерения цвета
- •5.2. Колориметрические системы
- •5.2.1. Система rgb
- •5.2.2. Система xyz
- •5.2.3. Переход от одной системы цветовых координат к другой
- •5.4. Расчет цветовых координат
- •5.4.3. Примеры расчета
- •Глава 6
- •6.1. Векторное представление цвета
- •6.1.1. Цветовое пространство
- •6.1.2. Особые плоскости и линии цветового пространства rgb
- •6.2. Выражение цветности
- •6.2.1. Свойства цветового треугольника
- •6.2.2. Диаграмма rg
- •6.1. Международно принятые функции сложения цветов
- •6.3. Аффинные свойства цветового пространства
- •Глава 7
- •7.1. Требования к основным цветам xyz
- •7.2. Нереальные цвета
- •7.4. Особые плоскости в цветовом пространстве xyz и цветовая диаграмма ху
- •Глава 8
- •8.1. Пороговые эллипсы на графике ху
- •8.2. Равноконтрастная система мко-60
- •8.3. Равноконтрастная система мко-64
- •Глава 9
- •9.1. Общие сведения
- •9.2. Нормализация условия освещения и наблюдения
- •9.3. Приборы для спектрофотометрических измерений
- •9.3.1. Измерение спектров
- •9.3.2. Устройства и детали спектральных приборов
- •9.3.3. Спектрофотометр сф-18
- •9.4. Колориметры
- •9.4.1. Принцип действия фотоэлектрических колориметров
- •9.4.2. Фотоэлектрический колориметр кно-3
- •9.5. Компаратор цвета экц-1
- •Глава 10
- •10.1. Цветовой круг и цветовое тело
- •10.2. Система оствальда
- •10.1. Буквенные обозначения цветов в системе Оствальда
- •10.4. Система рабкина
- •10.5. Система смешения красок «радуга»
- •Часть III
- •Глава 11
- •11.1. Принципы воспроизведения цветов объекта
- •11.2. Стадии процесса цветовоспроизведения
- •11.3. Пример идеального процесса
- •11.5. Требования к цветоделительным светофильтрам
- •Глава 12
- •12.1. Осложнения, связанные с распределением поглощения реальных красок по спектру
- •12.1.1. Триада реальных красок
- •12.1.2. Зональные поглощения реальных красок
- •12.1.4. Примеры синтеза цветов и цветовой корректуры
- •12.1. Зональные плотности реальных красок
- •12.2. Характеристики цветов репродукции и оригинала
- •12.1.5. Способы цветовой корректуры
- •Глава 13
- •13.1. Общие сведения
- •13.2. Условие независимости от спектрального состава
- •13.3. Воспроизведение однокрасочных наложений
- •13.3.1. Цветоделение дубликата и синтез репродукции
- •13.4. Шкала охвата 13.4.1. Строение шкалы
- •13.4.2. Цветоделенные негативы шкалы
- •13.5. Полоса цветоделения
- •13.6. Мера количества краски
- •13.7. Уравнения цветовоспроизведения и цветоделения
- •Глава 14
- •14.1. Требования к маскам и классификация методов маскирования
- •14.2. Контактное маскирование негатива 14.2.1. Перекрестное маскирование
- •14.3. Проекционное маскирование оригинала
- •14,4. Внутреннее маскирование цветного негатива
- •14.4.2. Внутреннее маскирование цветных негативов
- •14.5. Контактное маскирование слайдов 14.5.1. Маскирование единой цветной маской
- •14.5.2. Маскирование единой черно-белой маской
- •14.6. Расчет масок
- •Часть IV
- •Глава 15 однокрасочное растровое изображение
- •15.1. Общие сведения о растровом воспроизведении
- •15.2. Фотометрия растрового изображения
- •15.2.2. Растровые величины
- •15.2.3. Интегральные (визуальные) величины
- •15.3. Зависимость между интегральными и растровыми величинами
- •15.3.1. Формула Шеберстова—Муррея—Девиса
- •15.3.2. Эффект Юла—Нилсена
- •18.1. Синтез цвета при полиграфическом воспроизведении
- •16.1.1. Муар
- •16.1.2. Автотипный синтез цвета
- •16.2. Градационный процесс полиграфического воспроизведения
- •Часть I. Цвет и его свойства
- •Глава 1. Основные сведения о цвете............ 3
- •Глава 2. Зрительный аппарат и цветовое зрение...... 7
- •Глава 3. Психология цвета............... 27
- •Глава 4. Синтез цвета.................. 46
- •Глава 5. Основы метрологии цвета........... 61
- •Глава 10. Системы спецификации (систематизация цветов) 129
- •Глава 11. Идеальный процесс цветовоспроизведения .... 144
- •Глава 12. Реальный субтрактивный синтез........161
- •Глава 13. Начала дубликационной теории........178
- •Глава 14. Цветокорректирующее маскирование.....211
- •Часть IV. Воспроизведение цветных оригиналов в полиграфии.................241
- •Глава 15. Однокрасочное растровое изображение.....241
- •Глава 16. Многокрасочное растровое изображение.....250
Часть II измерение цвета
Глава 5
ОСНОВЫ МЕТРОЛОГИИ ЦВЕТА
5.1. Принципы измерения цвета
V
В основе любой точной науки лежат измерения, потому что раскрывая связи между явлениями, она прежде всего рассматривает количественные их соотношения. Экспериментальная проверка любого вывода требует проведения измерений. «Наука,— по словам Д. И. Менделеева,— начинается с тех пор, как начинают измерять». Английский физик У. Томсон (Кельвин) сказал: «Каждая вещь известна лишь в той степени, в какой ее можно измерить».
Наука об измерениях называется метрологией. Техника — полиграфия, кинематография, репрография — производит репродукции цветных объектов. Работники промышленности имеют дело не только с технологией воспроизведения, но и с методами определения качества продукции, а также материалов и промежуточных изображений — красок, цветных негативов и т. д. Следовательно, практикам необходимо владеть методами цветовых измерений. Учение об измерении цвета называется метрологией ц в е -т а или колориметрией.
Колориметрия использует два способа количественного описания цветов. 1) Определение их цветовых координат и тем самым — строгих численных характеристик, по которым их можно не только описать, но и воспроизвести. Системы измерения Цвета называются колориметрическими (см. главы 5—8). 2) Нахождение в некотором наборе эталонных цветов образца, тождественного данному. Совокупность образцов составляет систему, называемую системой спецификации (см. главу 10).
Для измерения цвета пользуются приборами, называемыми колориметрами. Колориметрическое определение основано на том, что с помощью трех основных синтезируется цвет, тождественный измеряемому (рис. 5.1, а). Две грани белой призмы, наблюдаемые через окуляр, образуют фотометрическое поле, позволяющее сравнивать цветности и интенсивности падающих на призму световых пучков. На одну половину поля направляют измеряемое излучение (нижняя грань призмы), на другую — основные. Их количества можно регулировать, например, с помощью диафрагм, сеток или нейтральных оптических клиньев. Наблюдатель видит обе половины поля и изменяет соотношения количеств основных на той грани, где происходит синтез, так, чтобы уравнять цвета обеих половин поля. Зная характеристики
Рис. 5.1. Схемы,измерения цвета
светорегулирующих устройств, при которых достигается визуальное тождество полей, по значениям коэффициентов пропускания находят количества основных, нужных для синтеза цвета, тождественного измеряемому. Тем самым определяются координаты измеряемого цвета.
На рис. 5.1, б показана схема измерения цвета в том случае, если он невоспроизводим по насыщенности. В этом случае, как было показано в разделе 4.3, одна или две координаты имеют отрицательные значения. Координаты цвета характеризуют его исчерпывающим образом. Если они известны, цвет нетрудно воспроизвести.
5.2. Колориметрические системы
Результаты любых измерений должны быть однозначными и сопоставимыми. Это — одно из основных требований метрологии. Для его осуществления необходимо, чтобы условия измерения, от которых зависят их результаты, были постоянными, принятыми за норму. Совокупность нормированных условий измерения цвета составляет колориметрическую систему. Нормируют цветности основных, уровень яркости, единицы количеств основных, размеры фотометрического поля — все эти факторы определяют значения цветовых координат измеряемого цвета.
В основе любой колориметрической системы находятся цветности цветов триады, так как от них результаты измерений зависят в особенно большой степени. Это видно из кривых основных возбуждений (рис. 2.8). Например, реакция синечувствительных рецепторов на длину волны λ = 390 нм равна 0,02 единицы, а для λ = 410 нм — несколько более 0,20 единицы. Следовательно, излучения λ = 390 нм и Я = = 410 нм вызывают одинаковые реакции синечувствительных рецепторов при мощностях, относящихся как 10:1. Это значит, что если за основной принят цвет монохроматического λ = 390 нм, то синяя координата данного цвета в 10 раз больше, чем при основном λ = 410 нм. Естественно, что для любого другого цвета триады можно привести подобный пример.
Основные излучения выбираются так, чтобы они в соответствии с первым законом Грасмана были линейно независимыми. Этому требованию отвечают излучения синего, зеленого и красного цветов. Тройка линейно независимых цветов называется триадой. Для измерения цвета можно воспользоваться разными триадами: основные могут занимать разные спектральные интервалы и участки спектра. Однако практически их число ограничено. Это связано с тем, что колориметрия предъявляет к основным не только требование линейной независимости, но и другие. Среди них — возможность легкого и точного осуществления основных и также возможно большая насыщенность воспроизводимых триадой цветов.
Как известно из изложенного выше, с уровнем яркости объекта связана контрастная чувствительность глаза. Поэтому два участка разных цветов, различаемые при одной их яркости, могут оказаться неразличимыми при другой, когда чувствительность глаза понижается. Следовательно, условия колориметрических измерений целесообразно нормировать так, чтобы уровень яркости поля был оптимальным в отношении чувствительности глаза.
То же относится и к размерам фотометрического поля. Первоначально (1931 г.) его размер был установлен 2°, позднее (1964 г.) наряду с ним было принято более широкое поле — 10°.
Здесь мы рассмотрим две системы измерения цветов пока в общих чертах, чтобы использовать эти предварительные сведения в дальнейшем при более подробном изложении колориметрии.
