- •Ю. В. Неёлов, в. В. Попцов теория автомобиля лабораторный практикум
- •Оглавление
- •Введение
- •Лабораторная работа № 1 «Геометрические параметры профильной проходимости автомобиля»
- •Инструкция по технике безопасности
- •Теоретические положения по определению геометрических параметров проходимости автомобиля
- •3. Оценка профильной проходимости
- •4. Организация проведения лабораторной работы
- •5. Порядок проведения лабораторной работы
- •Контрольные вопросы
- •Лабораторная работа №2 «Тормозные свойства автомобиля»
- •1. Теоретические положения тормозных свойств автомобиля
- •Оценочные показатели эффективности тормозной системы
- •Уравнения движения автомобиля при торможении
- •Порядок выполнения лабораторной работы
- •Контрольные вопросы
- •Лабораторная работа №3 «Аналитическое определение центра тяжести автомобиля»
- •1. Теоретические положения по определению предельных параметров дорожных автомобилей
- •2. Порядок выполнения работы
- •Контрольные вопросы
- •Лабораторная работа №4 Контактирование шины с опорной поверхностью
- •1.1. Оборудование и инструменты:
- •1.2. Теоретические положения по взаимодействию колеса с опорной поверхностью
- •1.3. Порядок проведения работы
- •1.4. Методика экспериментального определения параметров контакта
- •1.5. Обработка и анализ результатов эксперимента
- •1.6. Инструкция по технике безопасности при выполнении работы
- •1.7. Контрольные вопросы
- •Лабораторная работа №5 «Определение радиальной жесткости автомобильной шины»
- •1. Оборудование и инструменты
- •2. Теоретические положения
- •2.1. Радиусы автомобильного колеса
- •2.2. Реакции опорной поверхности
- •2.3. Момент сопротивления качению
- •3. Методика экспериментального определения радиальной жесткости шины
- •3.2. Обработка и анализ опытных данных
- •Техника безопасности
- •5. Контрольные вопросы
- •Практическая работа №1 Расчет карданной передачи
- •1. Назначение карданной передачи, ее работа и классификация
- •2. Порядок проведения работы
- •3. Пример расчета
- •4. Варианты заданий
- •5. Контрольные вопросы
- •Практическая работа №2 Расчет элементов подвески автомобиля
- •● Расчет упругих элементов подвески. Листовые рессоры.
- •1. Подвеска, ее работа, устройство и классификация
- •2. Порядок проведения расчета
- •2. Расчет упругой характеристики с двумя упругими элементами.
- •4. Расчет упругих элементов подвески. Листовые рессоры.
- •3. Пример расчета
- •4. Расчет упругих элементов подвески. Листовые рессоры.
- •4. Варианты заданий
- •5. Контрольные вопросы
- •Практическая работа № 3 Расчет элементов сцепления автомобиля
- •1. Сцепление, его работа и классификация
- •2. Порядок проведения работы
- •3. Пример расчета
- •4. Контрольные вопросы
- •Методика расчета тягово-скоростных свойств автомобиля введение
- •Основные задачи расчета
- •1. Расчет и построение внешней скоростной характеристики двигателя
- •2. Тягово-скоростные свойства автомобиля
- •2.1. Расчет сил тяги и сопротивления движению
- •2.2. Построение тяговой характеристики
- •3. Динамические свойства автомобиля
- •3.1. Построение динамического паспорта автомобиля
- •3.2. Характеристика ускорений
- •3.2. Графики разгона с переключением передач
- •4. Показатели тягово-скоростных свойств автомобиля
- •4.1. Максимальная скорость движения
- •4.2. Время разгона на участках пути 400 и 1000 м
- •4.2. Время разгона до заданной скорости
- •4.3. Скорость движения на затяжных подъемах
- •4.4. Максимальный подъем, преодолеваемый автомобилем
- •4.5. Максимальная сила тяги на крюке
- •Критерии оценки работы студентов
- •Список литературы
- •Основные данные отечественных автомобилей
- •Теория автомобиля лабораторный практикум
- •625000, Тюмень, ул. Володарского, 38.
- •6 25039, Тюмень, ул. Киевская, 52.
1. Оборудование и инструменты
Автомобиль.
Домкрат.
Шинный манометр.
Линейка для измерения вертикальных перемещений
Пластилин (кусочек).
Иголка (гвоздь).
2. Теоретические положения
2.1. Радиусы автомобильного колеса
Все силы, действующие на автомобиль со стороны дороги, передаются через колеса. Радиус колеса, снабженного пневматической шиной, в зависимости от веса груза, режима движения, внутреннего давления воздуха, износа протектора, может изменяться.
У колес различают следующие радиусы:
1) свободный; 3) динамический;
2) статический; 4) кинематический.
Свободный радиус (rсв) - это расстояние от оси неподвижного и ненагруженного колеса до наиболее удаленной части беговой дорожки. Для одного и того же колеса величина Rсв зависит только от величины внутреннего давления воздуха в шине.
Свободный радиус колеса указывается в технической характеристике шины. Если указанная характеристика отсутствует в справочных данных, то ее значение можно определить по маркировке шины.
Статический радиус (rст) - это расстояние от центра неподвижного колеса, нагруженного только нормальной силой, до опорной плоскости. Значение статического радиуса меньше свободного на величину радиальной деформации:
rст = rсв - hz = rсв - Rz/Сш, (5.1)
где hz = Rz/Сш - радиальная (нормальная) деформация шины, м;
Rz - нормальная реакция дороги, Н;
Сш - радиальная (нормальная) жесткость шины, Н/м.
Нормальную реакцию дороги, действующую на одно колесо можно определить по формуле:
Rz = GО / 2, (5.2)
где GО - вес автомобиля, приходящийся на определенную ось.
Из формулы (1) находим значение радиальной жесткости шины:
Сш = Rz / rсв - rст, (5.3)
Радиальная жесткость шины зависит от ее конструкции и внутреннего давления воздуха рш. Если известна зависимость Сш от рш, то величину деформации шины можно определить при любом внутреннем давлении воздуха. При номинальном давлении воздуха и нагрузке значение статического радиуса колеса можно найти по формуле:
rст = 0,5dо + (1 - ш)Нш, (5.4)
где do - диаметр обода колеса, м;
Нш - высота профиля шины в свободном состоянии, м;
ш - коэффициент радиальной деформации шины.
Для шин обычного профиля, а также широкопрофильных шин ш = 0,10 - 0,15; для арочных и пневмокатков ш =0,20 - 0,25.
Номинальное значение rст колеса применительно к номинальной нагрузке и внутреннему давлению воздуха указывается в технической характеристике шины.
Динамический радиус (rд) - это расстояние от центра катящегося колеса до опорной плоскости. Величина rд зависит в основном от внутреннего давления воздуха в шине, вертикальной нагрузки на колесо и скорости его движения. При увеличении скорости автомобиля динамический радиус несколько возрастает, что объясняется растяжением шины центробежными силами инерции.
Кинематический радиус (rк) - это радиус условного не дефомирующегося катящегося без скольжения колеса, которое имеет с данным эластичным колесом одинаковые угловую и линейную скорости:
rк = Vx/к . (5.5)
Величину rк определяют опытным путем, для этого замеряют путь S, проходимый автомобилем за nк полных оборотов:
rк = Vx/к = Vx * t /к* t = S/2 nк, (5.6)
где Vx - линейная скорость колеса;
к - угловая скорость колеса;
t - время движения.
Разница между радиусами rд и rк обусловлена наличием проскальзывания в области контакта шины с дорогой.
В случае полного буксования колеса путь, проходимый колесом равен нулю S = 0, а следовательно rк = 0. Во время скольжения заторможенных невращающихся (блокированных) колес, т.е. при движении юзом , nк = 0 и rк .
При движении автомобиля по дорогам с твердым покрытием и хорошим сцеплением приближенно принимают rк = rд = rс = r.
