
- •Биотехнология рАстений
- •Биотехнология растений конспект лекций
- •Содержание
- •Введение
- •Лекция 1
- •Лекция 3 Питание культивируемых клеток. Общая характеристика питательных сред
- •Лекция 4 Получение и культивирование каллуса
- •Составы широко используемых сред для культивирования клеток растений
- •Культуры
- •Лекция 5 Биология культивируемых клеток
- •4. Из группы клеток экк
- •1. Из одиночной изолированной клетки – прямо и организованно
- •2. Из одиноч-ной изолированной клетки через экк и преобразование его в эмбриоид
- •Лекция № 6 Использование культуры клеток в биосинтетической промышленности
- •Лекции № 7 Системы культивирования клеток
- •Лекция 8 Клональное микроразмножение растений
- •Лекция 9 Оздоровление растений
- •Лекция 10 Гаплоидная технология
- •Лекция 11 Генетическая инженерия
- •Лекция 12 Методы растительной биотехнологии
- •Лекция 13, 14 Клеточная селекция
- •Лекция 15 Криосохранение клеток
- •Список использованной литературы
Лекция 1
Биотехнология – новое бурно развивающееся направление биологии. Этапы развития биотехнологии. Основные направления в биотехнологии
Цель: познакомить студентов с биотехнологией как межотраслевой областью научно-технического прогресса и раздела практических знаний. Раскрыть основные факторы, обусловившие развитие современной биотехнологии, а также связь биотехнологии с биологическими, химическими, техническими и другими науками.
План лекции:
1.Биотехнология как межотраслевая область научно-технического прогресса и раздел практических знаний
2. Междисциплинарная природа биотехнологии
3. Основные факторы, обусловившие развитие современной биотехнологии
4. Основные направления биотехнологии
5. Практические задачи биотехнологии
1 Биотехнология – новая отрасль науки и производства, основанная на использовании биологических процессов и объектов для производства экономически важных веществ и создания высокопродуктивных сортов растений, пород животных и штаммов микроорганизмов. В буквальном смысле биотехнология – это «биология + технология», то есть применение фундаментальных биологических знаний в практической деятельности, направленной на производство лекарственных препаратов, ферментов, белков, красителей, ароматических веществ, витаминов и целого ряда биологически активных соединений. Кроме того, речь идет об использовании биотехнологических методов в селекции и конструировании принципиально новых организмов, ранее не существовавших в природе.
Биотехнология растений является самостоятельной дисциплиной, хотя по своим теоретическим и методологическим принципам может рассматриваться как часть общей биотехнологии. Специфика биотехнологии растений предопределена биологическими особенностями растений как особого царства живого мира.
В историческом аспекте человечество всегда использовало растения для получения жизненно важных продуктов. В этом смысле к биотехнологии можно отнести и традиционное растениеводство, и другие агротехнологии. Однако существуют принципиальные различия между биотехнологией и агротехнологией. Как известно, агротехнология имеет дело с целыми растениями и их популяциями, тогда как биотехнология основана на использовании культуры клеток и их популяций.
Следовательно, основным объектом биотехнологии растений являются отдельные клетки, органы, изолированные из целого растения и выращиваемые вне организма на искусственной питательной среде в асептических условиях.
Такие выращиваемые in vitro клетки, ткани, органы называются культурой клеток, тканей, органов – в зависимости от того, что изолируется из растения и культивируется. Однако все эти способы культивирования в последнее время стали называться одним термином «культура клеток растений», ибо в конечном счете культивируемой единицей является клетка.
Клеточные культуры с каждым годом находят все большее применение в самых разнообразных областях биологии, медицины и сельского хозяйства. Их используют при решении таких общебиологических проблем, как выяснение механизмов дифференцировки и пролиферации, взаимодействия клеток со средой, адаптации, старения, биологической подвижности, злокачественной трансформации и многих других. Важную роль клеточные культуры играют в биотехнологии при производстве вакцин и биологически активных веществ. Они являются исходным материалом для создания клеток-продуцентов, используются в целях повышения продуктивности сельскохозяйственных животных и для выведения новых сортов растений. Культуры клеток применяются для диагностики и лечения наследственных заболеваний, в качестве тест-объектов при испытании новых фармакологических веществ, а также для сохранения генофонда исчезающих видов животных и растений.
Биотехнология – это управляемое получение для народного хозяйства, а также для медицины целевых продуктов с помощью биологических агентов: микроорганизмов, вирусов клеток животных и растений, а также с помощью внеклеточных веществ и компонентов клетки. Биотехнология имеет глубокие исторические корни, а за последние 10-15 лет бурного развития оформилась как отдельная отрасль науки и производства.
Основными компонентами биотехнологического процесса являются: биологический агент, субстрат, целевой продукт, аппаратура и совокупность методов для управления процессом.
Биотехнологическая отрасль является одной из самых бурно развивающихся и является важным критерием для оценки уровня научно-исследовательского потенциала цивилизованной страны. Наглядное свидетельство того, что основой очередной волны экономического развития станут различные отрасли биотехнологии (сельскохозяйственная, пищевая, медицинская), - динамика курса акций соответствующих компаний. До недавнего времени биотехнологический бизнес мало выделялся из общей группы высоких технологий, однако нестабильность компьютерных магнатов и ряда крупных концернов торгующих природными ресурсами изменило мнение экономических аналитиков.
Котировка акций биотехнологических компаний оказались мене подвержены падению, так как продукция полученная на основе клеточных технологий нова и перспективна. Инвестиции в биосектор привели к беспрецендентному технологическому рывку. В Германии и Франции начаты крупномасштабные полевые испытания генетически модифицированных сортов кукурузы. Японские биотехнологии получили генетически модифицированную кукурузу, устойчивую к насекомым-вредителям. Некоторые компании находятся на грани создания революционных препаратов для различных видов рака, в первую очередь лейкемии. Три года назад одной американской компанией было вложено большое количество денег в биотехнологическую лабораторию в Калифорнии и теперь по данным представителей компании они близки к созданию средств извлечения ряда серьезных недугов, например, болезни Альцгеймера.
2 Термин биотехнология произошел от греческих слов: «биос» и «техне». «Биос» – жизнь, «техне» - вить прясть, делать что-то своими руками. Значит, биотехнология – это производство с помощью живых существ, совокупность промышленных методов, использующих живые организмы и биологические процессы для производства различных продуктов.
Биотехнология - это интегрированное использование биохимии, микробиологии и инженерных наук с целью достижения промышленного применения способностей микроорганизмов, культур клеток тканей и их частей. Объекты биотехнологии – микробы (грибы, бактерии, вирусы, простейшие) или клетки других организмов (растения, животные), биологически активные вещества специального назначения (иммобилизованные ферменты, катализирующие синтез или распад).
Типичные методы биотехнологии - крупномасштабное глубинное культивирование биообъектов в периодическом или непрерывном режиме, выращивание клеток растительных и животных тканей в особых условиях.
БИОХИМИЯ
ТЕХНОЛОГИЯ
ТЕХНОЛОГИЯ БИОТЕХНОЛОГИЯ
БИОХИМИЧЕСКАЯ
М
ЭЛЕКТРОНИКА ТЕХНОЛОГИЯ ПИЩЕВЫХ ДРУГИЕ ДИСЦИПЛИНЫ ПРОДУКТОВ
Рисунок 1 - Междисциплинарная природа биотехнологии |
3 Развитие биотехнологии в огромной степени определяется исследованиями в области микробиологии, биохимии, энзимологии и генетики организмов. Современная биотехнология как наука возникла в начале сороковых годов и получила ускоренное развитие с 1953 г., после эпохального открытия Джеймса Уотсона и Френсиса Крика о химической структуре и пространственой организации двойной спирали молекулы ДНК. Новое стратегическое ее направление – генетическая инженерия – родилось к 1972 г., когда в лаборатории Поля Берга впервые была синтезирована рекомбинантная молекула ДНК, что окончательно закрепило за биотехнологией и ее центральным звеном – биоинженерией (ядерной биологией) – важнейшее место в современной науке.
«Межпиковые» работы выдающихся биологов Г. Бойера, С. Коэна, Д. Морра, А.Баева, А.Белозерского, О. Эйвери, Г. Гамова, Ф. Жакоба, Ж.Моно и др. дополнили последовательный ряд важнейших открытий по идентификации генов и ферментов, выделению молекул ДНК из растительных, микробных и животных клеток, расшифровке генетического кода, а также механизмов экспрессии генов и биосинтеза белка у прокариот и эукариот.
В 50-е годы в биотехнологии возникает еще одно важное направление – клеточная инженерия. Основателями его являются П.Ф.Уайт (США) и Р. Готре (Франция). В последующие годы в институте физиологии растений СССР, а затем Российской Академии наук под руководством А.А.Курсанова, Р.Г. Бутенко были развернуты исследования в этой области с привлечением многих молодых ученых страны.
Генетическая и клеточная инженерия определили главные направления современной биотехнологии, методы которой получили широкое развитие в 80-е годы и используются во многих областях науки и производства в нашей стране и за рубежом.
Биотехнология как наука может рассматриваться в двух временных и сущностных измерениях: современном и традиционном, классическом.
Новейшая биотехнология (биоинженерия) – это наука о генно-инженерных и клеточных методах и технологиях создания и использования генетически трансформированных (модифицированных) растений, животных и микроорганизмов в целях интенсификации производства и получения новых видов продуктов различного назначения.
В традиционном, классическом смысле биотехнологию можно определить как науку о методах и технологиях производства, транспортировки, хранения и переработки сельскохозяйственной и другой продукции с использованием обычных, нетрансгенных (природных и селекционных) растений, животных и микроорганизмов, в естественных и искусственных условиях.
Высшим достижением новейшей биотехнологии является генетическая трансформация, перенос чужеродных (природных или искусственно созданных) донорских генов в клетки-реципиенты растений, животных и микроорганизмов, получение трансгенных организмов с новыми или усиленными свойствами и признаками. По своим целям и возможностям в перспективе это направление является стратегическим. Оно позволяет решать принципиально новые задачи по созданию растений, животных и микроорганизмов с повышенной устойчивостью к стрессовым факторам среды, высокой продуктивностью и качеством продукции, по оздоровлению экологической обстановки в природе и всех отраслях производства.
Для достижения этих целей предстоит преодолеть определенные трудности в повышении эффективности генетической трансформации и, прежде всего, в идентификации и клонировании генов, создании их банков, расшифровке механизмов полигенной детерминации признаков и свойств биологических объектов, создании надежных векторных систем и обеспечении высокой устойчивости экспрессии генов. Уже сегодня во многих лабораториях мира с помощью методов генетической инженерии созданы принципиально новые трансгенные растения, животные и микроорганизмы, используемые в коммерческих целях.
4 Мир растений определяет благополучие человечества. Известно, что 1,9 млрд тонн (- 99%) употребляемого сухого вещества человечество получает из растений. Растения широко используют в различных областях производства: сельское хозяйство, получение продуктов питания, строительство, производство тканей, бумаги и энергии. Особый интерес представляет получение различных химических соединений, биологически активных веществ (БАВ), из которых производят лекарственные препараты (фитопрепараты), химикаты для сельского хозяйства и пр.
Существенное увеличение урожая сельскохозяйственных культур в 20 веке достигнуто за счет химизации, механизации и мелиорации сельского хозяйства, что привело к загрязнению окружающей среды, истощению энергетических ресурсов, возрастанию затрат на единицу продукции. Кроме того, дополнительный прогресс в улучшении сельскохозяйственных культур в большинстве случаев достиг своего предела. Поэтому крайне необходимы поиск и внедрение новых подходов.
Среди новых подходов к этой проблеме наиболее перспективным является применение клеточной инженерии (синоним: клеточная и тканевая биотехнология). Клеточная инженерия (клеточная и тканевая биотехнология) основана на использовании принципиально нового метода – метода изолированной культуры клеток эукариотических организмов (растений, животных). Выращивание изолированных клеток и тканей на искусственных питательных средах (in vitro) в стерильных условиях получило название метода культуры изолированных тканей.
Роль культуры изолированных клеток и тканей в биотехнологии следует рассматривать в трех направлениях (Шевелуха и др., 2003). Первое связано со способностью изолированных растительных клеток продуцировать ценные для медицины, парфюмерии, косметики и других отраслей промышленности вещества вторичного синтеза: алкалоиды, стероиды, гликозиды, гормоны, эфирные масла и др. Как правило, вторичные вещества получают из каллусной ткани, выращенной на твердой (агаризованной) или жидкой (суспензионная культура) питательной среде. На основе клеточных технологий получают такие медицинские препараты, как диосгенин из клеток диоскореи, тонизирующие вещества из клеток женьшеня, используемые в медицине и парфюмерии. Продуктивность культивируемых клеток в результате клеточной селекции может значительно превышать продуктивность целых растений. Преимуществом такого способа получения веществ вторичного синтеза является также возможность использовать для этой цели растения, не произрастающие в наших природных условиях и получать продукцию круглый год. Второе направление – это использование культуры изолированных клеток для размножения и оздоровления посадочного материала. Этот метод, названный клональным микроразмножением растений, позволяет получать от одной меристемы сотни тысяч растений в год.
Третье направление – использование изолированных клеток в селекции растений, дающее возможность получать быстрорастущие растения, устойчивые к различным неблагоприятным факторам среды: засуха, засоление, низкие и высокие температуры, фитопатогены, тяжелые металлы и др. Вместе с тем это направление предусматривает создание новых растений путем слияния изолированных протопластов и получения неполовых (соматических) гибридов.
Без сомнения 21 век будет веком трансгенных растений. Эти растения, устойчивые к гербицидам, насекомым, вирусам быстро вытесняют старые сорта сельскохозяйственных культур. Перенос в изолированные протопласты чужеродных генов методами генной инженерии является перспективным методом получения трансгенных растений.
5 Практические задачи биотехнологии:
1. Получение препаратов микробиологическим синтезом.
2. Получение моноклональных антител.
3. Биотехнологическая трансформация биологически активных веществ.
4. Культура клеток и тканей растений для медицины.
Остановимся на каждой из задач. Традиционным для медицинской биотехнологии были и остаются производство вакцин, сывороток, диагностикумов, гормонов, витаминов, антибиотиков, аминокислот, ферментов, пробиотиков, статинов и др. Для лечения кишечных дисбактериозов биотехнологической промышленностью в н.в. выпускается ряд препаратов: бифидумбактерин – препарат, содержащий живые Bifidobacterium bifidum в высушенном виде; колибактерин, содержащий живые кишечные палочки штамма М-17; лактобактерин, являющийся живой лиофилизированной культурой молочнокислых бактерий (штаммов Lactobacillus fermenti и Lactobac.plantarum). Биотехнологические методы дают возможность получать амино- и органические кислоты с использованием иммобилизованных в полиакриламидный (ПААГ) или каррагениновый гели микроорганизмов. На основе ферментов получены ряд препаратов для лечения ран и ожогов.
Принципиально новыми являются разработки в области создания противоопухолевых вакцин, получения иммунотоксинов, цитокининов и моноклональных антител к бластомным тканям. Схемы создания противоопухолевых дендритных вакцин выглядят следующим образом: у больного берут кровь, выделя-ют моноциты, которые в последующем культивируют.Получают большое количество зрелых дендритных клеток. Одновременно выделяют у больного опухолевую ткань, ее кратковременно культивируют и далее получают пептиды. Затем дендритные клетки инкубируют с опухолевыми пептидами и далее клеточную взвесь вводят больному. На экспериментальных моделях было показано, что противоопухолевые дендритные вакцины индуцируют протекативный и терапевитический противоопухолевый иммунитет. В пилотных клинических исследованиях выявлена индукция противоопухолевого иммунного ответа и регрессия опухоли у больных с лимфомами и меланомами. На основе иммуннотоксинов созданы противоопухолевые препараты.
Развитие иммунной биотехнологии было вызвано практической необходимостью получения большого количества иммунопрепаратов для профилактики, диагностики и лечения как инфекционных, так и неинфекционных заболеваний. Наиболее часто применяемыми иммунными препаратами являются вакцины, диагностикумы.
В отличие от микробиологического производства, получение биологически активных веществ методом культуры клеток растений в н.в. не имеет широкого применения. Однако, успехи в этой области и уникальность большинства веществ растительного происхождения доказывают перспективность данного направления.
В н.в. получены клеточные культуры большого количества видов растений, способных синтезировать различные вещества вторичного метаболизма: алкалоиды, терпеноиды, гликозиды, полифенолы, эфирные масла и т. п.
Изменяя условия культивирования, используя индуцированный мутагенез и различные методы отбора, а также комбинируя различные подходы можно добиться ощутимых успехов в этом направлении. Данные технологии используются в тех случаях, когда нет достаточной сырьевой базы, а химический синтез является нерентабельным. Преимуществами таких технологий, альтернативных по отношению к классическим растениеводческим, являются:
- возможность получения любых клеточных культур от любых видов растений – редких исчезающих, эндемиков и т.д.;
- получение культур, превышающих по уровню накопления вторичных метаболитов и скорости роста природные растения в десятки и сотни раз;
- получение экологически чистой биомассы с заданными параметрами в необходимых объемах независимо от климатических, погодных и других условий;
- возможность автоматизации и механизации получения растительной биомассы по принципам микробиологической промышленности. Удачны в этом отношении примеры японских фирм, получивших ткань воробейника, продуцирующую шиконин в 8 раз больше интактного растения, а также производящих убихинон- 10 из ткани табака в количествах в 12 раз превышающих синтез в растении. Получены каллусные и суспензионные штаммы раувольфии змеиной, накапливающие до 2 % от сухой массы противоаритмического алкалоида аймалина, мака прицветникового, накапливающие кодеин, сангвинарин, а также штаммы известных растений адаптогенов – женьшень, родиолы и др. Одним из наиболее перспективных направлений в изучении биосинтеза биологически активных веществ растительного происхождения является получение генетически модифицированных организмов. В н.в. достигнуты определенные успехи в увеличении биосинтетических способностей культивируемых объектов путем введения в геном растительных клеток чужеродных генов. Клеточная инженерия (клеточная и тканевая биотехнология) основана на использовании принципиально нового метода – метода изолированной культуры клеток эукариотических организмов (растений, животных). Выращивание изолированных
клеток и тканей на искусственных питательных средах (in vitro) в стерильных условиях получило название метода культуры изолированных тканей.
Таким образом, состояние дел в области направленного биосинтеза биологических веществ растительного происхождения позволяет говорить о том, что уже в настоящее время есть возможность для практического применения достижений биохимии, генетики и физиологии растений в фармакологической промышленности. Для этого необходимо дальнейшее детальное изучение биосинтетических путей биологически активных веществ.
Контрольные вопросы:
Что изучает биотехнология?
Охарактеризуйте биотехнологию как межотраслевую область научно-технического прогресса.
Назовите основные факторы, обусловившие развитие современной биотехнологии.
Перечислите основные задачи биотехнологии.
Значение растительной биотехнологии для медицины.
Лекция 2
История развития метода культуры клеток и тканей растений.
Теоретические и методические принципы культивирования
клеток растений
Цель: ознакомить студентов с принципами культивирования клеток растений, остановиться подробно на истории развития метода культуры клеток и тканей растений, показать перспективность и скрытый потенциал растительной биотехнологии.
План лекции:
История развития метода культуры клеток и тканей растений
Перспективы развития биотехнологии в Республике Казахстан
Основные принципы культивирования клеток растений
1 Попытки культивировать изолированные клетки, ткани растений делались давно, и в истории развития этого метода можно выделить несколько этапов.
1 этап (1892-1902 гг.) связан с именами таких немецких исследователей, как Хаберландт, Фехтинг, Рехингер. Они пытались культивировать в растворе сахарозы различные растительные ткани. Для сегментов стеблей одуванчика и тополя был изучен первичный каллус. Не достигнув положительных результатов эти исследователи высказали ряд идей и гипотез, которые подтвердились позже. Так, Хаберландт выдвинул гипотезу о тотипотентности любой живой растительной клетки, т.е. способности клеток реализовывать свой потенциал развития и давать начало образованию целого растения при определенных условиях культивирования.
2 этап (1902-1922 гг.) ознаменовался созданием первых питательных сред для культивирования тканей животных. Эти среды были природного происхождения и содержали плазму крови и зародышевую жидкость. Попытки вырастить изолированные растительные ткани на искусственных питательных средах, содержащих растительные экстракты, оказались неудачными, т.к. использовались мало подходящие для проявления ростовой активности клетки и ткани высших растений.
3 этап (1922-1932 гг.) американский ученый Робинс и немецкий ученый Коте показали возможность культивирования на твердых питательных средах меристем кончиков корня томатов и кукурузы. Однако, через определенное время растительные ткани погибали.
4 этап (1932-1940 гг.) французский ученый Р. Готре показал возможность долгого культивирования в условиях in vitro растительных тканей за счет периодического пересеивания их на свежую питательную среду. Впоследствии с помощью этого метода многие растения были введены в культуру.
5 этап (1940-1960 гг.) с открытием в 1955 г. нового класса фитогормонов – цитокининов, была получена возможность стимулировать деление клеток кусочка ткани сердцевины паренхимы табака, лишенный проводящих пучков и камбия в зависимости от концентрации и соотношения стимуляторов роста можно было усиливать деление клеток экспланта, поддерживать рост каллусной ткани, индуцировать морфогенез. Было установлено положительное действие натуральных экстрактов типа эндосперма кокосового ореха, каштана, кукурузы и других растений для поддержания неорганизованного клеточного роста и стимуляции процессов морфогенеза в культуре каллусных тканей и клеточных суспензий.
6 этап (1960-1975 гг.) профессор Ноттингемского университета Э.Коккинг разработал ферментативный метод получения изолированных протопластов из корней и плодов томата и культивировать их в контролируемых условиях. Его сотрудником Пауэром было осуществлено искусственное слияние протопластов, что открыло новый путь к созданию соматических гибридов. Французский ученый Ж. Морель разработал метод микроразмножения растений в условиях in vitro с использованием меристемиды культуры и применял его для получения оздоровленного посадочного материала орхидей.
7 этап (1975 г. по настоящее время) продолжается быстрое развитие техники in vitro, изучение биологии культивируемых объектов, разрабатываются методы электрослияния изолированных протопластов, методы мутагенеза и клеточной селекции, методы получения гаплоидных растений, совершенствуется метод глубинного культивирования клеток с использованием изолированных протопластов и векторов, созданных на основе Ti- и Ri- плазмид Agrobacterium tumefaciens и A.rhizogenes. С помощью методов генной инженерии разработан эффективный метод переноса генов для двудольных растений. Таким образом, за последние десятилетия был сделан большой шаг вперед в раз-витии технических приемов работы с изолированными тканями и клетками растений. Однако объектом исследования, как правило, служили однодольные и двудольные травянистые растения и в редких случаях – древесные.
2 Приоритет развития биотехнологических производств, ориентированных на нужды здравоохранения, определен Государственной программой развития фармацевтической и медицинской промышленности РК, утвержденной Указом Президента РК от 20.08.1997 года, № 3621.В Республике Казахстан имеется огромный научный и производственный потенциал для развития медицинской биотехнологии. Это ведущие научно-исследовательские институты и предприятия республики, такие как Институт молекулярной биологии и биохимии им. М.А. Айтхожина (ИМБиБ), Научно-исследовательский сельскохозяйственный институт (НИСХИ), Институт физиологии, генетики и биоинженерии растений (ИФГБР), Алматинский биокомбинат, ОАО «Биомедпрепарат», ОАО «Биопрепарат», ОАО «Прогресс», Институт фармацевтической биотехнологии, Центральная лаборатория биологических исследований лекарственных соединений (ЦЛБИЛС), Институт микробиологии и вирусологии, Институт питания, Казахский государственный национальный университет им. аль-Фараби, Институт общей генетики и цитологии, Институт фитохимии. В период с 1993 по 2000 годы в Республике Казахстан основные прикладные исследования в области биотехнологии осуществлялись в рамках Республиканской целевой научно-технической программы (РЦНТП) «Использование методов биотехнологии и генной инженерии в медицине, сельском хозяйстве и промышленности», в рамках которой разработаны антигрибковый препарат «Розеофунгин», ранозаживляющее средство «Имозимаза», разработаны технологии получения экзополисахарида полимиксана в качестве мазевой основы, фермента декстраназы и пробиотика бифидумбактерина; получены лекарственные формы препаратов на основе первого отечественного противогрибкового антибиотика розеофунгина и фермента протосубтилин; создана везикулярная система для транспорта лекарств- СИТРАЛ; разработаны тест-системы для определения хориогонадотропина, гистамина и ВИЧ; разработаны методы получения и культивирования b-клеток поджелудочной железы кроликов и телят и их трансплантации интраокулярным и прямым способами в организм больного сахарным диабетом. В настоящее время в Институте фармацевтической биотехнологии совместно с ОАО «Биопрепарат» налаживается промышленный выпуск протеолитического иммобилизированного фермента «Имозимаза», -каротина, антибиотиков низина и тилозина, а также разрабатывается экспресс-метод диагностики ВИЧ.Совместно с Институтом фитохимии проводятся исследования по полупромышленному культивированию клеток полыни, являющейся продуцентом сесквитерпеного лактона арглабина, на основе которого разработан одноименный противоопухолевый препарат.
В научно-исследовательском ельскохозяйственном институте получены культуры гепатоцитов с высокой функциональной активностью. Гепатоциты имеют все морфофункциональные свойства, характерные для интактной печени, что доказано цитологическими и биохимическими исследованиями.
В институте молекулярной биологии и биохимии разработана новая лекарственная форма на основе фосфатидитинозитольного комплекса.
Значительным потенциалом обладают лаборатории, организованные в составе Национального центра по биотехнологии МОН РК. Уровень подготовки персонала и оснащение позволяют проводить сложные исследования по разработке лекарственных средств и диагностикумов на основе моноклональных антител. Под руководством НЦБ МОН РК осуществляется сбор, пополнение и поддержание микроорганизмов-продуцентов ценных биологически активных веществ. Существуют аппараты для культивирования микроорганизмов и растительных клеток Ак-203 и Ак-210, предназначенные для аэробного культивирования в жидких средах непатогенных микроорганизмов. Процесс культивирования в аппарате может проводиться как в периодическом, так и непрерывном режимах. Области применения: изучение биохимии и физиологии микроорганизмов; микробиологическое производство медицинских препаратов; пищевая промышленность; микробиологическая очистка сточных вод. Устройство: каждый аппарат Ак-203 и Ак-210 состоит из четырех основных частей : биохимического прибора, содержащего ферментер и вспомогательные устройства, связанные с ним гидравлическими, пневматическими и механическими связями; прибора измерения, включающего в себя измерители рН и рО2; прибора регулирования, в состав которого входят электронные блоки регулирования температуры жидкости, скорости вращения мешалки, задания расхода жидкости по четырем каналам и регулирования рН; автоматического потенциометра для регистрации параметров культивирования микроорганизмов. В состав каждого аппарата может быть дополнительно введен контроллер, осуществляющий связь аппаратов с компьютером типа IBM PC/АТ и программная система Ферм Сервис, что обеспечивает:
- автоматическое ведение процессов культивирования микроорганизмов;
- возможность корректного вмешательства оператора в процесс культивирования; протоколирование хода процесса с переключаемыми интервалами записи на принтере и жестком диске;
- графическое отображение параметров процесса и состояния аппаратуры комплекса;
- программирование процессов культивирования на специализированном языке Прок, существенно упрощающем задачу программирования для пользователя;
- обработку данных и управление процессом культивирования по алгоритмам заказчика.
В целях дальнейшего развития биотехнологии необходимо осуществлять творческие контакты с учеными международных биотехнологических центров и других научных учреждений развитых и развивающихся стран – США, Великобритании, Франции, Германии, Японии, Италии, Индии, Китая и других, а также обеспечить постоянную и эффективную государственную поддержку этих исследований, что позволит в дальнейшем выйти в области биотехнологии и особенно в биоинженерии на мировой уровень. По клеточной биотехнологии результаты исследований ученых нашей страны уже сегодня не уступают зарубежным, а по ряду важных направлений и превосходят их.
3 Культурой клеток растений (обобщенно) называется выращивание отдельных клеток, тканей и органов растений на искусственной питательной среде в асептических условиях. Кусочек простерилизованной растительной ткани помещают в чашку Петри или пробирку на агаризованную питательную среду. После этого в ткани начинается интенсивное деление клеток. Клеточная масса быстро разрастается, образуя каллус. Каллус- это особый тип ткани, представляющий собой скопления недифференцированных клеток. Если затем кусочки этого каллуса периодически пересаживать на свежую питательную среду, то они могут расти неограниченно долго. Термин «культура клеток растений» превратился в широкое и удобное понятие, охватывающее все виды работы in vitro с культурами изолированных клеток (даже части клеток - протопластов), тканей, органов, зародышей и целых растений-регенерантов. Термин in vitro (лат. «в стекле», «в склянке») используется для описания условий протекания процессов в стерильной искусственной окружающей среде: термин in vivo (лат.- «на живом») применяют по отношению к естественным нестерильным условиям протекания процессов жизнедеятельности в организме.Термин растение-регенерант означает асептически полученное растение с развитыми корнями и побегами, сформировавшееся в культуре, то есть in vitro.Теоретически любая живая растительная клетка потенциально способна развиваться в организм, из которого была изолирована и культивировалась в определенных условиях. Это свойство называется тотипотентностью. Тотипотентность (от лат. totus – «весь», «целый» и potential – «сила») – свойство клеток в полной мере реализовать присущую им генетическую информацию, обеспечивающую их дифференцировку и дальнейшее развитие до целого организма. Обычно универсальной тотипотентностью обладают оплодотворенные яйцеклетки растений и животных. Что касается соматических клеток, тотипотентностью обладают только клетки растений, и то преимущественно в условиях in vitro. Культивируемые клетки животных лишены тотипотентности. Одним из направлений совершенствования метода культуры тканей был поиск возможностей выращивания одиночных клеток, результатом которого явилась разработка метода получения и выращивания клеточных суспензий. Культура клеток, или суспензионная культура, - это выращивание отдельных клеток или небольших их групп во взвешенном состоянии в жидкой среде при использовании аппаратуры, обеспечивающей их аэрацию и перемешивание. В Алма-Ате работы с культурой тканей начались в 1975 г. в Главном ботаническом саду, а затем получили развитие в Институте молекулярной биологии и биохимии, Институте ботаники, университете им. аль-Фараби. Основателями школы биотехнологии в Казахстане являются М. Айтхожин и И. Рахимбаев. Метод культуры клеток, тканей и органов является в н.в. общепризнанным и широкоприменяется во всем мире для решения фундаментальных и прикладных вопросов биологии растений. Исследования и разработки в биологии в последние 20 лет привели к формированию и развитию самостоятельной области знаний – биотехнологии. Биотехнология – это отрасль науки и производства, использующая биологические системы и процессы для производства экономически важных веществ и продуктов. Для этого используются микроорганизмы, культивируемые клетки растений и животных, ферментные системы, искусственные формы жизни, созданные методами клеточной и генной инженерии. На основе культивируемых клеток и тканей высших растений создаются перспективные, принципиально новые технологии для различных отраслей промышленности и сельского хозяйства. Таким образом, культура клеток растений из лабораторного метода превратилась в теоретическую и технологическую основу новой отрасли промышленности – биотехнологии растений.
Контрольные вопросы:
Перспективы развития биотехнологии в Казахстане.
Что такое культура клеток растений.
Что такое тотипотентность? Кому принадлежит идея тотипотентности?
Что называется каллусом?
Какие ученые внесли существенный вклад в развитие метода культуры клеток?