
- •Дальневосточный государственный технический университет (двпи им. Куйбышева)
- •Предисловие
- •Введение
- •Глава 1. Основные понятия и определения в теории и практике автоматического регулирования
- •Структура аср и ее основные элементы.
- •1.2 Переходные процессы в аср.
- •1.3 Статические и астатические системы регулирования.
- •1.4 Принципы автоматического регулирования.
- •Глава 2. Динамические характеристики объектов регулирования
- •2.1 Разгонные характеристики объектов регулирования.
- •2.2 Импульсные характеристики объектов регулирования.
- •2.3 Частотные характеристики объектов регулирования.
- •Глава 3. Методы математического моделирования автоматических систем регулирования
- •3.1 Методы составления дифференциальных уравнений аср.
- •3.2. Операторы дифференцирования и передаточные функции. Преобразования Лапласа.
- •3.3 Примеры составления уравнений объектов регулирования.
- •Глава 4. Типовые элементарные звенья и структурные схемы аср.
- •4.1 Типовые элементарные звенья.
- •4.2 Структурные схемы и типы соединения звеньев.
- •Глава 5. Устойчивость систем регулирования
- •5.1 Теорема Ляпунова.
- •5.2 Алгебраические критерии устойчивости.
- •5.3 Критерий устойчивости Михайлова.
- •5.4 Частотный критерий устойчивости Найквиста - Михайлова.
- •5.5 Выделение областей устойчивости системы.
- •5.6 Показатели устойчивости системы.
- •Глава 6. Качество процессов регулирования и методы оценки качества
- •6.1 Показатели качества регулирования.
- •Интегральные критерии качества регулирования.
- •Глава 7. Законы регулирования в автоматических системах
- •7.1 Функциональная схема регулятора.
- •7.2 Законы регулирования.
- •7.10 Динамическая характеристика пд- регулятора
- •7.10 Динамическая характеристика пид- регулятора
- •Глава 8. Исполнительные механизмы в аср
- •8.1 Исполнительные механизмы с постоянной скоростью.
- •8.2 Исполнительные механизмы с переменной скоростью.
- •Исполнительные механизмы с пропорциональной скоростью.
- •Глава 9. Реализация законов регулирования
- •9.1 Регулятор пропорционального действия, п-регулятор.
- •9.2 Пропорционально-интегральный регулятор, пи-регулятор.
- •9.3 Выбор типа регулятора.
- •Глава 10. Настройка регуляторов электрических систем регулирования
- •10.1 Статическая настройка.
- •10.2 Динамическая настройка.
- •Глава 11. Электрические средства автоматического регулирования
- •11.1 Электрическая унифицированная система приборов автоматического регулирования «каскад».
- •11.2 Агрегатный комплекс электрических средств регулирования «акэср».
- •Система приборов автоматического регулирования «ремиконт».
- •Глава 12. Автоматическое регулирование паровых котлов
- •12.1 Автоматическое регулирование процесса горения барабанных котлов.
- •12.2 Схемы регулирования процесса горения паровых барабанных котлов.
- •12.3 Регулирование процесса горения на котлах с шахтно-мельничными топками.
- •Vобщ – расход общего воздуха, Vперв – расход первичного воздуха, – скорость изменения мощности моторов мельниц.
- •12.4 Регулирование процесса горения на котлах, работающих на жидком и газообразном топливе.
- •12.5 Управление котлами при параллельной работе на общую паровую магистраль.
- •12.4 Режимные характеристики котлов.
- •12.5 Принципиальная схема каскадного регулирования давления пара с главным корректирующим регулятором.
- •12.6 Регулирование питания барабанного котельного агрегата водой.
- •12.7 Автоматическое регулирование температуры перегрева пара.
- •12.8 Регулирование температуры пара вторичного перегрева.
- •12.9 Регулирование непрерывной продувки барабанных паровых котлов.
- •Глава 13. Регулирование прямоточных котлов
- •13.1 Регулирование процессов горения и питания прямоточных котлов.
- •13.2 Регулирование температуры пара прямоточных котлов.
- •Глава 14. Автоматизация вспомогательного оборудования котельных агрегатов тэс
- •14.1 Регулирование пылесистем с шаровыми барабанными мельницами.
- •14.2 Регулирование молотковых мельниц.
- •Глава 15. Автоматические тепловые защиты котельных агрегатов тэс
- •15.1 Автоматические защитные устройства.
- •15.2 Автоматические защиты барабанных паровых котлов.
- •Глава 16. Автоматизация отопительных и производственных котельных
- •16.1 Автоматическое регулирование паровых барабанных котлов малой мощности.
- •16.2 Автоматическое регулирование водогрейных котлов.
- •16.3 Автоматическое регулирование вспомогательного оборудования.
- •16.4 Автоматизация процессов в тепловых сетях.
- •16.5 Автоматическое регулирование котлов малой производительности.
- •16.6 Автоматическое регулирование процессов водоподготовки.
Введение
Автоматическое регулирование объектов теплоэнергетики это отрасль науки и техники, охватывающая теорию и принципы построения систем управления технологическим процессом без непосредственного участия человека. Если прежде в ранней стадии становления энергетики под автоматическим регулированием понималось выполнение определенных, часто повторяющихся действий без участия персонала, обслуживающего энергетические объекты, то в настоящее время преобладающую роль играет схемы и технические средства, обеспечивающие организацию и оптимизацию технологических процессов, автоматизацию управления ими.
Для развития энергетической ………………. исключительное значение имеет теоретические и экспериментальные исследования в области физического и математического моделирования. Разработаны теория и принципы построения моделей энергооборудования, их систем регулирования, посредством которых стало возможным моделирование процессов в крупных энергосистемах.
Широкая автоматизация технологических процессов нашла свое яркое отражение в развитии в развитии комплексной автоматизации электростанций, разнообразного применения телемеханических устройств в энергосистемах, в частности в диспетчерском управлении режимами работы электростанций и энергосистем в целом.
Регулирование технологических процессов в энергетике, происходящих при экспериментальных температурах и скоростях требует аппаратуры высокого класса, обладающей быстротой и точностью действия. Вместе с тем внедрение электронных полупроводниковых устройств и интегральных микросхем в системах управления не исключает механических, гидравлических, пневматических и электромеханических элементов и систем.
Применение автоматических систем регулирования позволяет повысить надежность и экономичность работы энергооборудования электростанций при малом числе обслуживающего персонала. Учитывая, что на эти показатели оказывает влияние большое количество взаимосвязанных факторов, для оценки эффективности работы энергоустановок используется вычислительная техника, обеспечивающая автоматический сбор необходимой информации и расчет технико-экономических показателей электростанций и энергосистем. Подсистемы контроля, управления и расчета технико-экономических показателей образуют автоматизированную систему управления технологическими процессами тепловой электростанции.
Глава 1. Основные понятия и определения в теории и практике автоматического регулирования
Основная задача автоматического регулирования энергетической установки - обеспечить ее работу во всей области гарантированных режимов. Режимы работы различных энергоустановок характеризуются значениями одной или несколькими величин. Так, режимы работы парового котла характеризуются давлением и температурой пара при выходе из котла, его паропроизводительностью. Режим работы турбины – частотой вращения ротора турбины и напряжением на клеммах генератора для конденсационного турбогенератора, для турбин с отборами пара для потребителя еще и давлением пара в отборах- теплофикационном или производственном. Те параметры режима работы энергоустановки, которые регламентируются внешним потребителем, называются внешними регулируемыми параметрами, остальные внутренними. Для турбогенератора внешними являются частота вращения ротора, напряжение на клеммах генератора и давление в отборах пара к потребителю. Для котельной установки- давление, температура и расход свежего пара. Внутренние регулируемые параметры в большинстве своем относятся к параметрам, определяющим регламентное состояние и работу вспомогательного оборудования электростанций.
Если в процессе работы энергоустановки регулируемые величины существенно отклоняются от требуемых (нормируемых) значений, то в работу вступают регулировочные органы энергоустановки, изменяя в необходимом направлении значения этих величин. В таком случае энергоустановка становится объектом управления в широком смысле или объектом регулирования, например, по одному внешнему параметру регулирования.
Для того, чтобы была обеспечена нормальная работа объекта регулирования (ОР) во всей области гарантированных режимов, он должен обладать определенной статической характеристикой, которая связывает режимные параметры энергоустановок в равновесных процессах, последняя может быть выражена аналитической или графической зависимостью регулируемой величины от нагрузки.
Например: n=f(Рн) или=f(Nт),
где Рн – нагрузка турбогенератора, Nт – электрическая мощность турбогенератора,n- число оборотов ротора турбины,- его угловая скорость вращения.
Р=f(Dп) - давление пара при выходе из котла,Dп- расход пара,tпп=f(Dп) – температура свежего пара.
Рис. 1.1 Статические характеристики объекта регулирования.
а) турбины по скорости вращения ротора,б), в) котла по давлению и температуре пара.
Естественная характеристика ОР зачастую может не удовлетворять потребителя. Чтобы привести ее в соответствие с требованиями потребителя применяется система регулирования, которая позволяет получить надлежащую статическую характеристику ОР. Система регулирования может состоять из нескольких элементов, каждый из которых имеет свою статическую характеристику.
Статическая характеристика ОР может быть получена на основании статических характеристик элементов, входящих в состав системы регулирования. Таким образом, статическая характеристика ОР является результирующей, поскольку, влияя на статические характеристики элементов системы регулирования, можно получить приемлемую для потребителя статическую характеристику ОР. Задача нахождения требуемой статической характеристики относится к статике регулирования - регулированию в установившихся (равновесных) процессах.
Режимы работы ОР и их систем регулирования
называются равновесными или установившимися,
если регулируемая величина и все
действующие в системе возмущения не
изменяются во времени. Так, установившиеся
движение турбогенератора возможно при
равенстве момента движущих сил Мт,
развиваемых паром или газом на лопатках
турбины, и момента сил сопротивления -
электромагнитных сил генератора Мг,
т.е..
В действительности момент сил
сопротивления, зависящий от потребителя
(электросети), в процессе работы
турбогенератора может изменяться,
вследствие чего равновесие в силовом
поле взаимодействующих сил нарушается,
и ротор турбогенератора получает
ускорение или замедление, из-за чего
равновесный режим нарушается.
При неустановившемся (неравновесном) режиме в действие приходит система регулирования. Связи между элементами системы регулирования и объектом регулирования в переходных процессах называются динамическим направленного действия. Они определяют характер переходных процессов в системе. Задача системы регулирования – перевести ОР в такой режим, который соответствует равновесному состоянию системы. Изучение переходных процессов составляет вторую основную задачу автоматического регулирования и относится к динамике регулирования.
Первым шагом при изучении динамики регулирования должно быть разграничение систем годных от систем не годных для целей управления объектом. Такое разграничение выполняется путем исследования устойчивости систем регулирования. Система регулирования называется устойчивой, если будучи выведенной из состояния равновесия сообщением ей некоторых начальных отклонений в своем дальнейшем движении будет стремиться к некоторому равновесному состоянию. Регулирование, не удовлетворяющее этому условию, называется неустойчивым. Исследование устойчивости регулирования имеет целью дать качественную оценку той или иной принципиальной схеме регулирования, то есть установить правильно ли будет функционировать данная система регулирования при каких-либо нарушениях равновесного режима или нет.
В исследованиях динамических процессов регулирования, предполагают, что к ОР или регулятору приложены некоторые воздействия. Их называют соответственно: возмущающими и управляющими.
В зависимости от характера связей системы регулирования делятся на системы работающие по:
1) замкнутому циклу (Рис. 1.2)
Рис. 1.2 Схема замкнутого регулирования
Р-Р- регулятор, ОР- объект регулирования, ГОС – главная обратная связь,
- управляющее
воздействие,
- возмущающее воздействие,
- регулируемый параметр,
- входная величина отклонения регулируемого
параметра.
2) разомкнутому циклу (Рис. 1.3.)
Рис. 1.3 Схема разомкнутого регулирования.
Наличие обратной связи между ОР и регулятором, которую называют главной, является необходимым условием автоматической системы регулирования (АСР), т.е. АСР это замкнутые динамические системы направленного действия.
В теплоэнергетике находят применение системы регулирования нескольких величин. При этом их регуляторы связаны вне ОР. Такие схемы называются системами связанного регулирования, например, АСР теплофикационных турбин.
Системы регулирования, где управляющее воздействие изменяется в зависимости от времени по заданному закону, носят название систем программного регулирования.