- •Лабораторная работа № 4 устройство и принцип работы спектрографа
- •Краткая теория
- •II.Молекулярные спектры
- •Устройство спектрографа
- •Ход работы:
- •2. Запрещается смотреть в излучающее окно ртутно-кварцевой лампы.
- •Градуировка спектрографа.
- •Запись результатов градуировки спектрографа
- •II.Определение длин волн в неизвестном спектре испускания.
- •Определение длин волн известных линий спектра
- •III. Наблюдение спектров поглощения
- •Определение погрешностей
- •Приложение 1
- •Литература:
- •Глава 24. Контрольные вопросы
- •Тестовые задания.
- •14. Спектр излучения по сравнению со спектром поглощения:
- •15. Полная энергия молекулы это:
- •16. Спектром излучения вещества называется:
- •17. При переходе атома из одного состояния в другое поглощается фотон, энергия которого определяется разностью энергий атомных состояний
- •18. Поглощение атомами энергии фотона характеризуется:
- •19. Каждый электрон в молекуле находится на определенной орбитали ( -орбитали) и обладает определенной энергией, поэтому в молекуле существует:
Устройство спектрографа
Простейшим устройством из установок, позволяющих получить спектр, является двухтрубный призменный спектроскоп Характеристика спектрального аппарата определяется оптической схемой и ее параметрами. Выпускают довольно много типов спектральных аппаратов, что позволяет выбирать прибор с нужными данными. Каждый аппарат рассчитан на работу в определенной области спектра.
Для работы в видимой области выпускают трехпризменный спектрограф ИСП-51, рабочий диапазон которого 3600-10000А0. Оптические детали смонтированы на массивном литом основании, так что весь спектральный аппарат является жестко связанным прибором. Основными оптическими деталями являются: коллиматор, система призм (или дифракционных решеток), камера. Спектрографы - это спектральные аппараты, в которых спектр регистрируется фотографическим методом. Спектрографы служат главным образом для работы с эмиссионными спектрами, реже в абсорбционной спектроскопии.
Рассмотрим оптическую схему спектрографа.
Входная щель и первый объектив составляет коллиматор. Щель регулируется и является объектом, изображение которого строит спектральный аппарат. Качество спектра зависит от качества изготовления щели. Диспергирующая система прибора ИСП-51 состоит из трех стеклянных призм. Две призмы 63-градусные и одна с постоянным углом отклонения лучей. Та часть спектрографа, в которой заключены собирательный объектив и выходная щель и размещается камера для фотопластин, расположенная в фокальной плоскости - называется камерой.
ХОД ЛУЧЕЙ В СПЕКТРОГРАФЕ ИСП-51
Рис.3
Световой поток от источника 1 проходит через регулируемую щель 2 и объектив 3 коллиматора. Затем систему призм 4 и объектив 5 камеры, выходную щель 6 (кассета) и окуляр 7 в глаз наблюдателя.
При переходе от одной области спектра к другой, при вращении рукоятки, каждая дисперсионная призма вращается со своим столиком самостоятельно, так что лучи падающие в центр выходной щели (кассета) проходит через все призмы под углом наименьшего отклонения и испытывает общее отклонение точно на 900.
Вращение контролируется по шкале, которая показывает число оборотов винта вращения столиков, выраженное в целых и сотых долях в спектральном окне. Соответствующие значения для длин волн приводятся в спектральных таблицах (аттестате) прибора. Фокусировка прибора осуществляется перемещением объектива коллиматора и камеры (3 и 5).
В зависимости от назначения спектрального аппарата в фокальной плоскости окуляра располагают различные устройства. В спектрографах спектр регистрируют с помощью фотографической пластинки, которую помещают в кассету, последняя вместе с окуляром составляет камеру вполне аналогичную камерам фотоаппаратов.
Если в фокальной плоскости поместить матовое стекло, то можно визуально наблюдать спектры. Для более точного наблюдения используют линзы с небольшим фокусным расстоянием, через которое наблюдают мнимое увеличенное изображение спектра. Используя фотоэлементы или фотоумножители можно регистрировать интенсивность спектров очень быстро и точно.
