- •6.1. Общая постановка задачи 318
- •0. Введение
- •0.1. Приближенные вычисления
- •0.2. Численные методы и программирование
- •0.3. Особенности машинных вычислений
- •0.4. Структура учебного пособия
- •1. Специальные классы математических объектов и операции над ними
- •1.1. Комплексные числа
- •1.1.1. Основные понятия
- •1.2. Векторы
- •1.2.1. Основные понятия
- •1.2.2. Определение программного класса многомерных векторов
- •1.3. Полиномы
- •1.3.1. Общие сведения
- •1.3.2. Операции над полиномами
- •1.3.3. Вычисление значений полиномов
- •1.3.4. Вычисление корней полиномов
- •1.3.5. Определение программного класса полиномов
- •2. Матрицы и задачи линейной алгебры
- •2.1. Общие сведения о матрицах и матричных операциях
- •2.2. Методы решения основных задач линейной алгебры
- •2.2.1. Методы решения систем линейных алгебраических уравнений (слау)
- •2.2.1.1. Метод Гаусса для решения слау, вычисления определителей и обращения матриц
- •2.2.1.2. Предварительная факторизация матриц (разложение в произведение двух матриц) в задачах решения слау
- •2.2.1.2.1. Факторизация матриц по методу Холецкого
- •2.2.1.3. Метод ортогонализации для решения слау
- •2.2.1.4. Итерационные методы решения слау
- •2.2.1.4.1. Проблема сходимости итерационных методов
- •2.2.2. Методы вычисления собственных значений матриц
- •2.2.2.1. Метод неопределенных коэффициентов
- •2.2.2.2. Метод Данилевского
- •2.2.2.4. Метод Леверрье-Фаддеева
- •2.2.2.5. Итерационный степенной метод
- •2.2.2.6. Метод Крылова
- •2.2.3. Метод наименьших квадратов (мнк)
- •2.3. Программная реализация матричного класса
- •2.3.1. Общее описание структуры матричного класса
- •2.3.2. Интерфейсный файл реализации матричного класса matrix.H
- •2.4. Программная реализация методов вычисления собственных значений и собственных векторов матриц
- •2.4.1. Метод неопределенных коэффициентов
- •2.4.2. Программная реализация метода Крылова вычисления собственных значений
- •2.4.3. Метод Леверрье-Фаддеева вычисления коэффициентов характеристического полинома
- •2.5. Элементы линейного программирования
- •2.5.1. Общая постановка задачи
- •2.5.2. Примеры задач линейного программирования
- •2.5.2.1. Задача о пищевом рационе
- •2.5.2.2. Задача о распределении ресурсов
- •2.5.2.3. Задача планирования перевозок (транспортная задача)
- •2.5.3. Симплекс-метод решения задачи линейного программирования
- •2.5.3.1. Приведение системы к стандартной, удобной для преобразований форме
- •2.5.3.2. Алгоритм замены базисных переменных
- •2.5.3.3. Алгоритм поиска опорного решения озлп
- •2.5.3.3.1. Алгоритм выбора разрешающего элемента для приближения к опорному решению
- •2.5.3.4. Алгоритм поиска оптимального решения
- •2.5.4. Транспортная задача линейного программирования
- •2.5.4.1. Общие сведения
- •2.5.4.2. Формирование опорного плана
- •2.5.4.3. Циклические переносы перевозок для улучшения плана
- •2.5.4.4. Метод потенциалов
- •2.5.5. Транспортная задача при небалансе запасов и заявок
- •2.5.6. Транспортная задача с временным критерием
- •2.6. Программная реализация задач линейного программирования
- •2.6.1. Симплекс-метод решения озлп
- •2.6.2. Программная реализация метода решения транспортной задачи
- •3. Аналитическое приближение функций, заданных таблично
- •3.1. Общая постановка задачи
- •3.2. Общая методика решения задач аппроксимации
- •3.2.1. Алгебраическая интерполяция
- •3.2.1.1. Классический интерполяционный полином
- •3.2.1.2. Метод интерполяции Лагранжа
- •3.2.1.3. Интерполяционный полином Ньютона
- •3.2.1.4. Интерполяция сплайнами
- •3.2.1.5. Аппроксимация функций по методу наименьших квадратов
- •3.2.2. Программная реализация класса аппроксимирующих функций
- •4.1.2. Программная реализация методов численного интегрирования
- •4.2.Численное дифференцирование
- •5. Введение в численные методы решения дифференциальных уравнений
- •5.1. Обыкновенные дифференциальные уравнения (общие сведения)
- •5.2. Процессы как объект исследования и управления
- •5.3. Операционное исчисление и его применение к исследованию динамики линейных систем
- •5.3.1. Общие сведения
- •5.3.1.1. Правила операционного исчисления
- •5.3.2. Решение линейных уравнений с постоянными коэффициентами
- •5.3.2.1. Передаточные функции линейных динамических систем
- •5.3.2.2. Частотные характеристики динамических систем
- •5.3.2.3. Фазовые портреты динамических систем
- •5.3.2.4. Ограничения области применения символического метода
- •5.3.3. Программная реализация класса символического метода
- •5.4. Конечно-разностные методы решения задачи Коши для линейных и нелинейных оду
- •5.4.1. Одношаговые методы
- •5.4.1.1. Метод Эйлера
- •5.4.1.2. Методы Рунге-Кутта 2-го порядка
- •5.4.1.3. Метод Рунге-Кутта 4-го порядка
- •5.4.2. Многошаговые методы (методы Адамса)
- •5.4.3. Проблема устойчивости
- •5.4.4. Программная реализация численных методов решения задачи Коши
- •5.5. Двухточечные краевые задачи
- •5.5.1. Метод конечных разностей для линейных краевых (граничных) задач
- •5.5.2. Метод стрельбы для граничных задач
- •5.5.3. Программная реализация класса граничных задач
- •6. Численные методы решения систем нелинейных уравнений (сну) и поиска экстремумов функций
- •6.1. Общая постановка задачи
- •6.2. Решение нелинейных уравнений
- •6.2.1. Функция одной переменной при отсутствии помех
- •6.2.1.1. Методы последовательного сокращения интервала неопределенности
- •6.2.1.2. Рекуррентные методы уточнения текущей оценки значения корня
- •6.2.2. Уточнение корня функции одной переменной в условиях помех
- •6.2.2.1. Методы стохастической аппроксимации
- •6.3. Методы поиска экстремума функций
- •6.3.1. Унимодальные функции одного аргумента при отсутствии помех
- •6.3.1.1. Метод дихотомии
- •6.3.1.2. Метод Фибоначчи
- •6.3.1.3. Метод золотого сечения
- •6.3.2. Многомерный поиск экстремума
- •6.3.2.1. Метод координатного спуска
- •6.3.2.2. Метод градиента (наискорейшего спуска или крутого восхождения или метод Бокса-Уилсона)
- •6.3.2.3. Последовательный симплексный поиск (псм) субоптимальной области в многомерном пространстве
- •6.3.2.3.1. Вводные замечания
- •6.3.2.3.2. Алгоритм последовательного симплексного метода
- •6.3.2.3.3. Подготовительные операции
- •6.3.2.3.4. Алгоритм поиска
- •6.3.2.3.5. Преимущества метода
- •6.3.2.3.6. Недостатки метода
- •6.4. Программная реализация класса подпрограмм для поиска экстремума унимодальных в заданном интервале функций одной переменной
- •6.5. Программная реализация класса подпрограмм для многомерного поиска экстремума унимодальных функций
- •Приложение. Как переносить данные в Ехсеl и отображать графики зависимостей
- •Литература
- •324050, Кривой Рог-50, пр. Металлургов, 28.
4.1.2. Программная реализация методов численного интегрирования
//Нам не обойтись без класса векторов
#include "vector.h"
/*Параметризованный класс для вычисления интегральных сумм */
template <class YourOwnFloatType>
class Integrate
{
vector<YourOwnFloatType> x, y; /*Узлы и значения в узлах*/
public:
/*Конструктор, в качестве параметра принимающий два вектора, содержащих соответственно узлы и значения в них */
Integrate(vector<YourOwnFloatType> _x, vector <YourOwnFloatType> _y): x(_x), y(_y)
{
/*Проверяем входные данные на корректность */
if(x.getm()!=y.getm())
throw xmsg("Количество узлов не совпадает с количеством значений в них");
if(x.getm()<2)
throw xmsg("Слишком мало точек");
}
Integrate(Integrate &_): x(_.x), y(_.y) {} /*Конструктор копирования */
//Прототипы методов численного интегрирования
//Метод прямоугольников
YourOwnFloatType rectangle_method(),
//Метод трапеций
trapecion_method(),
/*Метод Симпсона - желательно четное число интервалов*/
simpson_method();
};
//Определения методов численного интегрирования
//Метод прямоугольников
template <class YourOwnFloatType>
YourOwnFloatType Integrate<YourOwnFloatType>::rectangle_method()
{
YourOwnFloatType sum=0;/* Интегральная сумма */
/*В связи с возможностью наличия во входных данных неравноотстоящих узлов шаг интегрирования в этом и последующих методах будем вычислять как разность между текущим узлом и ближайшим к нему */
for(int i=0;i<x.getm()-1;i++)
sum+=(x[i+1]-x[i])*y[i];
return sum;/* Возвращаем результат */
}
//Метод трапеций
template <class YourOwnFloatType>
YourOwnFloatType Integrate<YourOwnFloatType>::trapecion_method()
{
YourOwnFloatType sum=0;
/*Суммируем предполагаемые значения функции в междоузлиях */
for(int i=0;i<x.getm()-1;i++)
sum+=(x[i+1]-x[i])*(y[i]+y[i+1])/2;
return sum;
}
//Метод Симпсона
template <class YourOwnFloatType>
YourOwnFloatType Integrate<YourOwnFloatType>::simpson_method()
{
YourOwnFloatType sum=0;
/*В этом методе на каждом шаге интегрирования интегральная сумма вычисляется на двух интервалах (по трём точкам)*/
for(int i=0;i<x.getm()-2;i+=2)
sum+=(x[i+1]-x[i])*(y[i]+4*y[i+1]+y[i+2])/3;
return sum;
}
/*Подставляя в шаблон конкретный тип, получаем действительный вектор */
typedef vector<double> dvector;
#include <conio.h>
/*Тестирующая функция */
void main()
{
double limits[2]={.7,1.3};/*Пределы интегрирования */
/*Количество интервалов */
#define POINTCOUNT 20
/*Вектора, содержащие узлы и значения в них */
dvector x=POINTCOUNT+1,y=POINTCOUNT+1;
/*Шаг интегрирования */
double step=(limits[1]-limits[0])/POINTCOUNT;
for(int i=0;i<=POINTCOUNT;i++)
x[i]=limits[0]+i*step,
y[i]=1/sqrt(2*x[i]*x[i]+.3);
/*Создаём объект, в качестве параметров используя только что заполненные векторы */
Integrate<double> test(x,y);
/*Выводим на экран результаты интегрирования различными методами для сравнения и анализа */
cout<<test.rectangle_method()<<endl
<<test.trapecion_method()<<endl
<<test.simpson_method()<<endl;
getch();
}
