- •Автоматика
- •1. Управление и регулирование: основные понятия и определения
- •2. О классификации систем управления
- •3. Физические основы измерительных преобразователей автоматических систем
- •3.1. Физика преобразователей температуры
- •3.2. Физика измерения усилий
- •3.3. Методы измерения параметров движения
- •3.4. Физические основы измерения состава и концентрации вещества
- •4. Основные задачи исследования автоматических систем
- •5. Операционное исчисление и его применение к исследованию динамики стационарных линейных систем
- •5.1. Общие сведения
- •5.2. Решение линейных уравнений с постоянными коэффициентами
- •6. Передаточные функции линейных динамических систем
- •7. Частотные характеристики линейных динамических систем
- •8. Введение в теорию устойчивости линейных стационарных систем авторегулирования
- •9. О качественном анализе динамических систем
- •10. О проблеме оптимального управления
- •11. Динамическое программирование как математический метод решения задач оптимального управления
- •12. Лабораторный практикум по компьютерному моделированию линейных стационарных динамических систем операторным методом
- •12.1. Введение
- •12.2. Лабораторная работа №1
- •12.3. Лабораторная работа №2
- •12.4. Лабораторная работа №3
- •12.5. Лабораторная работа №4
- •12.6. Лабораторная работа №5
- •12.7. Лабораторная работа №6
- •12.8. Лабораторная работа №7
- •13. Программная реализация операторного метода анализа динамики линейных систем
- •13.1.1. Класс линейных дифуравнений с постоянными коэффициентами
- •13.1.2. Форма основной программы
- •13.1.3. Модуль основной программы
- •13.1.4. Форма ввода данных
- •13.1.5. Заголовочный файл модуля ввода данных
- •13.1.6. Модуль ввода данных
- •13.1.7. Заголовочный файл инициализационного модуля
- •13.1.8. Инициализационный модуль
- •13.1.9. Файл проекта
- •13.2. Исходные тексты программы на языке Object Pascal, выполненной в среде Delphi 4
- •13.2.1. Форма изменения размеров пера
- •13.2.2. Модуль изменения размеров пера
- •13.2.3. Форма ввода данных
- •13.2.4. Модуль ввода данных
- •13.2.5. Форма основной программы
- •13.2.6. Модуль основной программы
- •13.2.7. Форма сведений о программе
- •13.2.8. Модуль сведений о программе
- •13.2.9. Файл конфигурации
- •13.2.10. Файл проекта
- •14. Приложения
- •14.1.1. Базовый класс параметризованных векторов
- •14.1.2. Параметризованный класс матриц
- •14.1.3. Параметризованный класс полиномов
- •14.1.4. Класс полиномиальных уравнений
- •14.2. Математические классы на объектном Паскале
- •14.2.1. Класс комплексных чисел
- •14.2.2. Класс действительных векторов
- •14.2.3. Класс комплексных векторов
- •14.2.4. Класс действительных матриц
- •14.2.5. Класс комплексных матриц
- •14.2.6. Класс полиномов
- •Литература
- •Автоматика
- •324050, Кривой Рог-50, пр. Металлургов, 28.
6. Передаточные функции линейных динамических систем
Благодаря операционному исчислению стало возможным перейти от классических методов количественного описания динамических свойств линейных систем в виде дифференциальных уравнений к более экономным средствам – передаточным функциям, временным и частотным характеристикам.
Передаточную функцию можно трактовать как комплексный коэффициент преобразования входного воздействия динамической системы в ее реакцию на выходе. Для формирования передаточной функции дифференциальное уравнение системы относительно функций вещественного переменного преобразуют в уравнение для функций комплексного переменного с использованием рассмотренных интегральных преобразований.
Если ввести понятие передаточной функции динамической системы в форме преобразования Лапласа W(p) как отношение изображения выходной функции F(p) к изображению входной (управляющей) U(p) при нулевых начальных условиях W(p)=F(p)/U(p), то оказывается, что изображение интеграла Дюамеля, являющегося изображением выходной функции, равно произведению передаточной функции на изображение управляющей функции.
Сложные динамические объекты редко идентифицируются сразу как единое целое – обычно получают их описание по частям или звеньям, а затем находят общее описание системы как описание соединения отдельных звеньев.
В этом случае передаточные функции оказываются удобным инструментом определения общего описания линейной системы. Вначале рассмотрим примеры передаточных функций некоторых элементарных звеньев.
Рассмотренные нами ранее уравнения 2-го порядка для механической колебательной системы или электрического колебательного контура, записанные в общем виде как
a2 +a1 +a0x=ku,
приводят к передаточной функции вида
W(p)=
.
Если масса механической системы или индуктивность электрической цепи пренебрежимо малы, то приведенное уравнение вырождается в уравнение первого порядка a1 +a0x=ku и его передаточная функция W(p)=k/(a1p+a0).
Уравнение интегрирующего звена Tdx/dt=u,
его решение – x=
,
а передаточная функция W(p)=1/Tp.
Звено с постоянным запаздыванием (типа, например, конвейера) описывается уравнением x(t)=u(t–) и его передаточная функция W(p)=e–pτ.
В управляющих устройствах систем управления используют звенья, имеющие передаточные функции, обратные передаточным функциям колебательного и инерционного звеньев, например, форсирующее звено первого порядка с передаточной функцией W(p)=Tp+1, или форсирующее звено второго порядка с передаточной функцией W(p)=a2p2+a1p+1, или дифференцирующее звено W(p)=ap.
Звенья в системе могут соединяться последовательно, параллельно и встречно-параллельно (обратной связью).
Передаточная функция последовательного соединения звеньев равна произведению входящих в цепочку звеньев:
W(p)=
.
При параллельном соединении звеньев результирующая передаточная функция равна сумме передаточных функций входящих в соединение звеньев:
W(p)=
.
И, наконец, соединение двух звеньев по принципу обратной связи, когда
xвх1=xвхxвых2
может быть получена так:
xвых=W1(p)xвх1; xвых2=W2(p)xвых
W(p)=
.
При этом верхний знак «–» относится к положительной обратной связи, а нижний «+» к отрицательной.
Обратную связь принято называть жесткой, если W2(p)=const, то есть звено в обратной связи есть простой усилитель. Нежесткие обратные связи имеют ряд разновидностей – гибкие, изодромные, скоростные, запаздывающие и пр.
