- •Глава IV кривые линии
- •§ 18. Лекальные кривые
- •Основы начертательной геометрии и проекционное черчение
- •Глава V
- •§ 19. Центральное и параллельное проецирование
- •§ 20. Ортогональные проекции.
- •Частные случаи расположения точек относительно плоскостей проекций
- •Взаимное расположение прямых
- •Способы задания плоскости на эпюре
- •§ 21. Взаимное расположение прямой, точки и плоскости
- •§ 22. Пересечение прямойс плоскостью. Пересечение двух плоскостей
- •Вопросы для повторения
- •Глава VI способы преобразования чертежа
- •§ 23. Способ перемены плоскостей проекций
- •§ 24. Способ вращения
- •§ 25. Способ совмещения
- •Вопросы для повторения
- •§ 26. Прямоугольные аксонометрические проекции
- •§ 27. Косоугольные аксонометрические проекции
- •Построение плоских геометрических фигур в аксонометрии
- •Вопросы для повторения
- •Глава VIII
- •Геометрические тела в ортогональных
- •И аксонометрических проекциях.
- •Развертка поверхностей геометрических тел
- •§29. Многогранники
- •Пирамида
- •Развертка поверхности неправильной полной пирамиды
- •§ 30. Тела вращения
- •Цилиндр
- •Построение цилиндра в аксонометрии
- •Построение точки, лежащей на поверхности цилиндра
- •Развертка поверхности конуса
- •Построение точки, лежащей на поверхности конуса
- •Ортогональные проекции шара
- •Построение шара в аксонометрии
- •Развертка поверхности шара
Способы задания плоскости на эпюре
Положение плоскости в пространстве определяется тремя ее точками, не лежащими на одной прямой. Поэтому чтобы задать на эпюре плоскость, достаточно задать три ее точки (рис. 206). Плоскость можно задать точкой и прямой (рис. 207, а), двумя параллельными прямыми (рис. 207, б), двумя пересекающимися прямыми (рис. 207, в), треугольником (рис. 207, г). Можно задать плоскость следами.
Различные случаи расположения плоскостей относительно
плоскостей проекций
Плоскость общ его положения — плоскость, расположенная наклонно ко всем плоскостям проекций (рис. 208). Такая плоскость пересекается с тремя плоскостями проекций по прямым, которые являются следами этой плоскости. Каждая пара следов сходится в точке, которая называется точкой схода следов плоскости и располагается на оси проекций. Плоскость общего положения имеет три точки схода, которые обозначаются Рх, Ру, Рz. В этих точках плоскость пересекает оси координат. Плоские фигуры, лежащие в плоскости общего положения, проецируются на плоскости проекций с искажением.
Проецирующая плоскость — плоскость, перпендикулярная какой-либо плоскости проекций.
Горизонтально-проецирующая плоскость — плоскость, перпендикулярная горизонтальной плоскости проекций Н (рис. 209).
Фронтально-проецирующая плоскость - плоскость, перпендикулярная фронтальной плоскости проекции (рис. 210).
Профильно-проецирующая плоскость — плоскость, перпендикулярная профильной плоскости проекций (рис. 211).
Проецирующая плоскость проецируется на плоскость проекций, к которой она перпендикулярна, в прямую. На рис. 209 плоскость Р - горизонтально-проецирующая, ΔАВС, лежащий в плоскости Р, проецируется в отрезок прямой линии, который совпадает со следом плоскости Рн.
На рис. 210 ΔDEF, принадлежащий фронтально-проецирующей плоскости R, проецируется в отрезок, совпадающий со следом плоскости Rv.
