- •Оглавление
- •Глава 1. Задувка доменной печи 21
- •Глава 2. Горновые работы и эксплуатация оборудования литейного двора 26
- •Глава 3. Огнеупорная футеровка и система охлаждения доменной печи 47
- •Глава 4. Назначение, состав и эксплуатация оборудования шихтоподачи и загрузки шихты в доменную печь 75
- •Глава 5. Назначение, состав и эксплуатация устройств для подачи и нагрева дутья 106
- •Глава 6. Назначение, состав и эксплуатация устройств по очистке и транспортировке доменного газа 128
- •Глава 7. Остановки, ремонты и выдувка доменной печи 137
- •Глава 8. Качество шихтовых материалов для доменной плавки и его контроль 147
- •Глава 9. Расчет шихты, состава и количества колошникового газа и дутья 159
- •Глава 10. Контроль хода доменной печи по показаниям контрольно-измерительных приборов 163
- •Глава 11. Управление ходом доменной печи 180
- •Глава 12. Отклонения от оптимального хода доменной печи, их предупреждение и устранение 200
- •Глава 13. Способы интенсификации работы доменной печи. Энерго- и ресурсосберегающие технологии производства чугуна 217
- •Глава 14. Особенности технологического режима работы доменных печей при выплавке различных видов чугуна. Продукты доменной плавки и учет показателей работы доменной печи 249
- •Введение
- •1. Возникновение и развитие доменного производства
- •2. Структурная схема производства чугуна в доменной печи и сущность доменного процесса
- •3. Профиль доменной печи и его развитие
- •Раздел первый Работы у доменной печи. Состав, назначение и эксплуатация оборудования Глава 1. Задувка доменной печи
- •1.1. Проверка основных конструкций и оборудования перед задувкой
- •1.2. Сушка огнеупорной кладки печи и воздухонагревателей
- •1.3. Составление задувочной шихты и загрузка доменной печи
- •1.4. Задувка печи и ее эксплуатация в начальном периоде
- •Глава 2. Горновые работы и эксплуатация оборудования литейного двора
- •2.1. Уход за чугунными и шлаковыми летками
- •2.2. Выпуск чугуна и шлака
- •2.3. Уборка и транспортировка жидких продуктов доменной плавки
- •2.4. Состав, назначение и эксплуатация оборудования литейного двора
- •2.4.1 Машина для вскрытия чугунной летки (уход и надзор)
- •2 .4.2. Машины для забивки чугунной летки и уход за ними
- •2 .4.3. Шлаковый стопор
- •2.4.4. Поворотные и качающиеся желоба одноносковой разливки чугуна и шлака
- •2.4.5. Мостовой кран литейного двора
- •2.5. Заправочные массы: требования, свойства, состав, приготовление
- •Глава 3. Огнеупорная футеровка и система охлаждения доменной печи
- •3.1. Водоснабжение и пароснабжение доменной печи
- •3.2. Опорные конструкции. Фундамент. Устройство и охлаждение низа печи
- •3.3. Устройство и охлаждение заплечиков, распара и шахты
- •3.4. Охлаждение шахты доменной печи крупногабаритными охлаждаемыми модулями
- •3.5. Применение медных холодильников для охлаждения доменной печи
- •3.6. Воздушное охлаждение лещади. Уход и надзор
- •3.7. Уход и надзор за охладительной системой и замена сгоревших элементов
- •3.7.1. Качество охлаждающей воды и очистка змеевиков холодильников
- •3.7.2. Очистка охлаждающей воды в фильтрах
- •3.8. Система испарительного охлаждения доменных печей и ее эксплуатация
- •Глава 4. Назначение, состав и эксплуатация оборудования шихтоподачи и загрузки шихты в доменную печь
- •4.1. Рудный двор
- •4.2. Бункерная эстакада
- •4.3. Подача материалов к скиповому подъемнику
- •4.4. Устройства для подачи шихты на колошник доменной печи и их эксплуатация
- •4.6. Засыпное устройство доменной печи. Типы устройств
- •4.7. Эксплуатация конусных засыпных аппаратов
- •4.7.1. Прием и контроль тщательности изготовления засыпного аппарата
- •4.7.2. Контрольная сборка, монтаж, центровка и регулирование засыпного аппарата
- •4.7.3. Уход и надзор за засыпным аппаратом при эксплуатации
- •4.7.4. Осмотр засыпного аппарата на работающей доменной печи
- •4.8. Нарушение выравнивания давления газов в межконусном пространстве засыпного аппарата
- •4.9. Устройство уровнемеров шихты и их эксплуатация
- •Глава 5. Назначение, состав и эксплуатация устройств для подачи и нагрева дутья
- •5.1. Воздуходувные машины
- •5.2. Подача дутья в доменную печь
- •5.3. Конструкции воздушных фурм
- •5.4. Воздухонагреватели. Конструкции и принцип работы
- •5.5. Назначение, состав и эксплуатация оборудования воздухонагревателей
- •5 .6. Эксплуатация воздухонагревателей
- •Глава 6. Назначение, состав и эксплуатация устройств по очистке и транспортировке доменного газа
- •6.1. Схема транспортирования и очистки газа
- •6 .1.1. Грубая очистка
- •6.1.2. Полутонкая очистка
- •6.1.3. Тонкая очистка
- •6.2. Уход и надзор за устройствами по очистке газа и улавливанию пыли при эксплуатации доменной печи
- •Глава 7. Остановки, ремонты и выдувка доменной печи
- •7.1. Остановки доменной печи
- •7.2. Остановка доменной печи на замену малого конуса засыпного аппарата
- •7.3. Порядок отключения и подключения сети загрязненного и чистого газа при ремонтах доменной печи
- •7.4. Виды ремонтов доменных печей и их организация
- •7.5. Выдувка доменной печи и выпуск жидкого «козла»
- •Раздел второй управление работой доменной печи технология производства чугуна
- •Глава 8. Качество шихтовых материалов для доменной плавки и его контроль
- •8.1. Кокс
- •8.2. Качество агломерата и его контроль
- •8.3. Качество окатышей и добавок
- •Глава 9. Расчет шихты, состава и количества колошникового газа и дутья
- •9.1. Методика расчета шихты
- •9.2. Материальный и тепловой балансы доменной плавки
- •Глава 10. Контроль хода доменной печи по показаниям контрольно-измерительных приборов
- •10.1. Признаки, по которым судят о ходе доменной печи
- •10.2. Оценка хода доменной печи по показаниям контрольно - измерительных приборов
- •10.3. Давление и расход горячего дутья
- •10.4. Давление и температура колошникового газа
- •10.5. Состав колошникового газа
- •10.6. Температура и содержание диоксида углерода в газе по радиусу колошника
- •10.7. Контроль распределения материалов и газов по окружности колошника
- •10.8. Контроль хода доменной печи по перепадам статического давления газов
- •10.9. Контроль хода доменной печи по показаниям приборов, регистрирующих уровень засыпи материалов
- •Глава 11. Управление ходом доменной печи
- •11.1. Горение углерода и состав газов в горне
- •11.2. Влияние зоны горения на работу печи и факторы, определяющие размеры зоны горения
- •11.3. Рудная нагрузка и загрузка в печь холостых подач
- •11.4. Температура, влажность и количество дутья
- •11.4.1. Скорость опускания материалов
- •11.4.2. Распределение температуры по высоте печи
- •11.5. Параметры воздушных фурм
- •11.6. Способы воздействия на ход доменной печи режимом загрузки шихтовых материалов
- •11.6.1. Влияние порядка загрузки материалов
- •11.6.2. Влияние величины уровня засыпи
- •11.6.3. Влияние массы подачи
- •11.6.4. Влияние работы вращающегося распределителя
- •11.7. Влияние свойств шлака и его количества на работу доменной печи
- •11.8. Десульфурация чугуна и влияние различных факторов на перевод серы в шлак
- •11.9. Особенности и возможности воздействия на ход доменных печей, оборудованных бесконусными загрузочными устройствами
- •11.10. Перспективные средства контроля и управления ходом и тепловым состоянием доменной печи
- •Глава 12. Отклонения от оптимального хода доменной печи, их предупреждение и устранение
- •12.1. Периферийный ход
- •12.2. Центральный ход
- •12.3. Канальный ход
- •12.4. Перекос уровня засыпи или односторонний ход печи
- •12.5. Тугой ход печи
- •12.6. Верхние подвисания шихты
- •12.7. Нижние подвисания шихты
- •12.8. Холодный ход печи
- •12.9. Горячий ход печи
- •12.10. Загромождение горна
- •12.11. Настыли и их устранение
- •Глава 13. Способы интенсификации работы доменной печи. Энерго- и ресурсосберегающие технологии производства чугуна
- •13.1. Некоторые понятия об интенсификации
- •13.2. Нагрев дутья
- •13.3. Увлажнение дутья
- •13.4. Обогащение дутья кислородом
- •13.5. Вдувание в горн природного газа и других углеводородсодержащих добавок к дутью
- •13.6. Комбинированное дутье
- •13.7. Применение пылеугольного топлива в доменных печах и технология его приготовления
- •13.7.1. Угольная сырьевая база пылеугольного топлива
- •13.7.2. Технические требования к пылеугольному топливу
- •13.7.3. Подача пылеугольного топлива в горн доменной печи
- •13.8. Повышение давления газов в рабочем пространстве доменной печи
- •13.9. Внедоменная обработка жидкого чугуна
- •13.9.1. Обессеривание чугуна содой
- •13.9.2. Обессеривание чугуна известью
- •13.9.3. Обессеривание чугуна магнием
- •13.9.4. Дефосфорация и обескремнивание чугуна
- •13.10. Утилизация вторичных ресурсов доменного производства
- •13.10.1. Использование энергии избыточного давления доменного газа
- •13.10.2. Утилизация тепла жидкого шлака
- •13.10.3. Утилизация тепла отходящих газов воздухонагревателей
- •Глава 14. Особенности технологического режима работы доменных печей при выплавке различных видов чугуна. Продукты доменной плавки и учет показателей работы доменной печи
- •14.1. Выплавка передельного чугуна
- •14.2. Выплавка литейного чугуна
- •14.3. Производство ферросплавов
- •14.4. Продукты доменной плавки и их использование
- •14.4.1. Чугун
- •14.4.2. Разновидности чугунов и их использование в промышленности
- •14.4.3. Доменный шлак и его использование
- •14.4.4. Использование колошникового газа и колошниковой пыли
- •14.5. Технико-экономические показатели работы доменной печи и первичный учет
- •Приложение к разделу первому
- •П1. Развитие профиля доменной печи и основные размеры профилей
- •П2. Расчет профиля современной доменной печи п.2.1. Методы определения размеров профиля
- •П.2.2. Пример расчета профиля по методу м.А. Павлова
- •П.З. Расчет фундамента доменной печи п.3.1. Принцип расчета и справочные данные
- •П.3.2. Пример расчета размеров подошвы и пня с учетом общей нагрузки на фундамент и допустимой нагрузки на грунт
- •П.4. Изготовление футляра чугунной летки и операции у шлаковых леток
- •П.5. Упрощенный расчет задувочной шихты доменной печи п.5.1. Исходные предпосылки для расчета
- •П.5.2. Примерный расчет задувочной шихты для условий работы доменной печи полезным объемом 2000 м3 комбината «Криворожсталь»
- •П.6. Расчет производительности скипового подъемника доменной печи п.6.1. Принцип расчета
- •П.6.2. Пример расчета производительности скипового подъемника доменной печи полезным объемом 2002 м3
- •П.7. Расчет производительности вагон-весов
- •П.8. Расчет производительности ленточного транспортера, используемого для подачи шихтовых материалов от бункеров к скиповой яме п.8.1. Принцип расчета и исходные данные
- •П.8.2. Пример расчета производительности ленточного транспортера для загрузки доменной печи полезным объемом 2002 м3
- •П.9. Расчет количества чугуновозных ковшей п.9.1. Принцип расчета и исходные данные
- •П.9.2. Пример расчета количества чугуновозных ковшей для доменного цеха, состоящего из двух доменных печей полезным объемом 2002 м3
- •П.10. Расчет количества разливочных машин п.10.1. Принцип расчета
- •П.10.2. Пример расчета количества разливочных машин
- •П.11. Расчет количества шлаковых ковшей п.11.1. Принцип расчета
- •П.11.2. Пример расчета количества шлаковых ковшей в доменном цехе в составе двух доменных печей полезным объемом 2002 м3
- •Приложение к разделу второму
- •П.12. Унифицированный расчет шихты, дутья, газа, материального и теплового балансов доменной плавки передельного чугуна* п.12.1. Введение
- •П.12.3. Расчет шихты
- •П.12.3.1. Баланс серы
- •П. 12.3.2. Определение количества, состава и свойств шлака
14.3. Производство ферросплавов
К числу доменных ферросплавов относятся ферромарганец, зеркальный чугун и ферросилиций с содержанием кремния не более 15% В таблице 14.1 приведен состав доменных ферросплавов.
Доменный ферромарганец по содержанию марганца подразделяют на две марки: Мн5 и Мн6, а по содержанию фосфора - на два класса. Зеркальный чугун по содержанию марганца делят на марки 341, 342 и 343. Ферросилиций классифицируют на две марки по содержанию кремния. Кроме того, в доменных печах иногда выплавляют феррохром и феррофосфор.
В последние годы объем производства доменных ферросплавов непрерывно сокращался, гак как его себестоимость выше, а качество ниже, чем у ферросплавов, получаемых в электропечах. При выплавке ферромарганца производительность печи снижается более чем в три раза, а расход кокса возрастает в 3-4 раза по сравнению с выплавкой передельного чугуна. Для успешного восстановления марганца основность шлака должна быть не менее 1,35-1,5. Шлаки с такой основностью очень вязки и неустойчивы и вызывают частые расстройства хода и серьезные неполадки в работе печи. В связи с перечисленными выше недостатками выплавка ферросплавов в доменных печах к настоящему времени практически прекращена.
14.4. Продукты доменной плавки и их использование
14.4.1. Чугун
Передельный чугун подразделяют на группы, классы, категории и степени в зависимости от содержания кремния, марганца, фосфора, серы и мышьяка (табл. 14.2).
Кроме приведенной стандартизации передельного чугуна, на каждом металлургическом предприятии существуют технические условия и кондиции на чугун, служащие основанием для взаиморасчетов между доменными и сталеплавильными цехами.
Литейный чугун после выпуска из доменной печи разливают в чушки и в твердом состоянии отправляют на машиностроительные заводы и другим потребителям, где для отливки деталей машин его вторично подвергают расплавлению в специальных печах-вагранках.
Литейный коксовый чугун выплавляют семи марок: ЛК1-ЛК7. Каждую марку подразделяют на три группы по содержанию марганца, пять классов по содержанию фосфора и на пять категорий по содержанию серы (табл. 14.3).
14.4.2. Разновидности чугунов и их использование в промышленности
Благодаря сочетанию высоких литейных свойств, достаточной прочности и износостойкости чугуны, выплавляемые в доменных печах и получаемые в вагранках или индукционных печах, получили широкое распространение в машиностроении и других отраслях промышленности.
В зависимости от того, в какой форме присутствует углерод в чугунах, различают белые, серые, высокопрочные чугуны, чугуны с вермикулярным графитом и ковкие* чугуны.
Высокопрочные чугуны и чугуны с вермикулярным графитом являются разновидностью серых, но из-за высоких механических свойств их выделяют в особые группы.
Белыми называют чугуны, в которых весь углерод находится в связанном состоянии в виде цементита Fe3C. Согласно диаграмме состояния Fe-Fe3C белые чугуны подразделяют на доэвтектические, эвтектические и заэвтектические. Из-за большого количества цементита они обладают высокой твердостью (450-550 НВ) и хрупкостью, что не позволяет их использовать для изготовления деталей машин. Из них изготовляют прокатные валки, лемехи плугов, тормозные колодки и другие износостойкие детали.
В промышленности широко применяют серые, высокопрочные и ковкие чугуны, в которых весь углерод или его часть находится в виде графита. Графит обеспечивает пониженную твердость, хорошую обрабатываемость резанием, а также высокие антифрикционные свойства вследствие низкого коэффициента трения.
Серыми называют чугуны с пластинчатой формой графита. Структура и свойства серых чугунов определяются их химическим составом и скоростью охлаждения при получении отливок. Чем выше содержание кремния, ниже содержание марганца и меньше скорость охлаждения, тем больше выделится углерода в виде графита, способствуя более высоким прочностным характеристикам литой детали. С увеличением скорости охлаждения возрастает количество химически связанного углерода, содержащегося в сером чугуне. При выборе скорости охлаждения принимают во внимание толщину стенки отливки - чем она больше, тем меньше скорость охлаждения и полнее протекает процесс графитизации.
По химическому составу серые чугуны разделяют на обычные (нелегированные) и легированные. Обычные серые чугуны - сплавы сложного состава, содержащие основные элементы Fe, С, Si и постоянные примеси Mn, P и S. Содержание этих элементов в серых чугунах колеблется в следующих пределах, %: 2,2-3,7 С; 1-3 Si; 0,2-1,1 Mn; 0,02-0,3 Р и 0,02-0,15 S. В небольших количествах могут содержаться Cr, Ni и Си, которые попадают в чугун из железорудных материалов. Почти все эти элементы влияют на условия графитизации, количество графитных включений, структуру металлической основы и, как следствие, свойства чугунов.
Углерод оказывает определяющее влияние на качество чугунов, так как от его содержания зависит количество графита и литейные свойства. Чем выше концентрация углерода, тем больше выделений графита и ниже механические свойства чугуна. По этой причине максимальное содержание углерода ограничивается доэвтектической концентрацией. В то же время снижение его содержания отрицательно сказывается на жидкотекучести и, следовательно, на литейных свойствах чугунов. Нижний предел углерода принимают для толстостенных отливок, верхний - для тонкостенных.
Кремний обладает сильным графитизирующим действием; способствует выделению графита в процессе затвердевания чугунов и разложению выделившегося цементита.
Марганец затрудняет графитизацию чугунов, несколько улучшает их механические свойства, особенно в тонкостенных отливках.
Сера - вредная примесь. Она ухудшает механические и литейные свойства чугунов: понижает жидкотекучесть, увеличивает усадку и повышает склонность к образованию трещин.
Фосфор сообщает металлу хрупкость, поэтому ответственные детали отливают из малофосфористого чугуна. В литых чугунных деталях содержание фосфора ограничивают 0,3%. Фосфор в количестве до 0,3% растворяется в феррите. При большей концентрации он образует с железом и углеродом «фосфидную» эвтектику. Она имеет низкую температуру плавления (950 °С), что увеличивает жидкотекучесть чугунов и позволяет их использовать для художественного литья. Повышенное содержание фосфора допускается в отливках, от которых требуется высокая износостойкость (до 0,7% Р), а также используемых для художественного литья (до 1% Р).
Механические свойства серых чугунов зависят от свойств металлической основы и, главным образом, от количества, формы и размеров графитных включений. Решающее влияние графита обусловлено тем, что его пластинки, прочность которых ничтожно мала, действуют как надрезы или трещины, пронизывающие металлическую основу и ослабляющие ее. При растяжении (наиболее жестком виде нагружения) по концам графитных включений легко формируются очаги разрушения. При изгибе статическая прочность серых чугунов в два раза выше, чем при растяжении, а при сжатии - в четыре раза. Прочность при сжатии и твердость определяются, в основном, структурой металлической основы чугунов.
Марка серого чугуна состоит из букв СЧ (серый чугун) и цифры, показывающей уменьшенное в 10 раз значение (в мегапаскалях) временного сопротивления при растяжении (табл. 14.4).
Прочность чугуна существенно зависит от толщины стенки отливки. Указанное в марке значение σв соответствует отливкам с толщиной стенки 15 мм. При увеличении толщины стенки от 15 до 150 мм прочность и твердость чугуна уменьшаются почти в два раза.
Ферритно-перлитные серые чугуны СЧ 20, СЧ 25 применяют для деталей, работающих при повышенных статических и динамических нагрузках: блоки цилиндров, картеры двигателей, поршни цилиндров, станины различных станков, зубчатые колеса и другие отливки.
Перлитные серые модифицированные чугуны СЧ 30, СЧ 35 обладают более высокими механическими свойствами и используются для изготовления деталей, работающих в тяжелых условиях износа: зубчатые колеса, гильзы блоков цилиндров, шпиндели, распределительные валы и др. Чугуны этих марок обладают наибольшей герметичностью, что позволяет изготавливать из них корпуса насосов, компрессоров, арматуры для пневмо- и гидроприводов.
Для деталей, работающих при повышенных температурах, применяют легированные серые чугуны: жаростойкие (дополнительно содержат Cr, A1), жаропрочные (Сг, Ni, Mo). Применение находят также немагнитные, хромоникелевые чугуны с аустенитной структурой.
Отливки из серого чугуна подвергают термической обработке. Используют низкий отжиг (-560 °С) для снятия внутренних напряжений и стабилизации размеров, нормализацию или закалку с отпуском для повышения механических свойств и износостойкости. Для повышения износостойкости гильз цилиндров, распределительных валов и других деталей отдельных двигателей автомобилей перлитные чугуны подвергают азотированию.
Высокопрочными называют чугуны, в которых графит имеет шаровидную форму. Их получают модифицированием магнием, который вводят в жидкий чугун в количестве 0,02-0,08%. Ввиду того, что модифицирование чугунов чистым магнием сопровождается сильным пироэффектом, чистый магний заменяют лигатурами (например, сплавом магния и никеля).
Чугун после модифицирования имеет следующий химический состав, %: 3,0-3,6 С; 1,1-2,9 Si; 0,3-0,7 Мn; до 0,02 S и до 0,1 Р. По структуре металлической основы высокопрочный чугун может быть ферритным или перлитным. Ферритный чугун в основном состоит из феррита и шаровидного графита; допускается до 20% перлита. Структура перлитного чугуна - сорбитообразный или пластинчатый перлит и шаровидный графит; допускается до 20% феррита.
Шаровидный графит - менее сильный концентратор напряжений, чем пластинчатый, поэтому он меньше снижает механические свойства металлической основы. Чугуны с шаровидным графитом обладают более высокой прочностью и некоторой пластичностью. Марка высокопрочного чугуна состоит из букв ВЧ и числа, обозначающего уменьшенное в 10 раз значение его временного сопротивления (см. табл. 14.4).
Высокопрочные чугуны применяют в различных отраслях техники, эффективно заменяя сталь во многих изделиях и конструкциях. Из них изготовляют оборудование прокатных станов (прокатные валки массой до 12 т), кузнечно-прессовое оборудование (траверса пресса, шабот ковочного молота) и многие другие ответственные детали, работающие при высоких циклических нагрузках и в условиях изнашивания.
В некоторых случаях для улучшения механических свойств применяют термическую обработку отливок: закалку и отпуск при 500-600°С для повышения прочности; отжиг, способствующий сфероидизации перлита, для увеличения пластичности.
Чугуны с вермикулярным графитом. Структура этих чугунов формируется под действием комплексного модификатора, содержащего магний и редкоземельные металлы. Графит приобретает шаровидную (до 40%) и вермикулярную - в виде мелких тонких прожилок - форму.
После модифицирования эти чугуны содержат, %: 3,1-3,8 С; 2,0-3,0 Si; 0,2-1,0 Мn; до 0,025 S; 0,08 Р.
Чугуны с вермикулярным графитом производят четырех марок: ЧВГ 30; ЧВГ 35; ЧВГ 40; ЧВГ 45 (табл. 14.4). Число в марке обозначает уменьшенное в 10 раз значение временного сопротивления.
По механическим свойствам чугуны с вермикулярным графитом занимают промежуточное положение между серыми и высокопрочными чугуна-ми. Они прочнее серых чугунов, особенно при циклических нагрузках; предел выносливости σ-1 составляет 140 МПа у ЧВГ 30 и 190 МПа у ЧВГ 45. Механические свойства этих чугунов в меньшей степени зависят от массы отливок. Они отличаются хорошей теплопроводностью (40-50 Вт/(м∙К)), что обеспечивает их стойкость к теплосменам.
Чугуны с вермикулярным графитом заменяют серые чугуны в отливках, подвергаемых циклическим нагрузкам и частым теплосменам. Из них отливают блоки цилиндров, поршни, гильзы, крышки цилиндров двигателей внутреннего сгорания, а также изложницы и кокили. При введении в состав чугунов до 1,2% Ni и 0,4% Мо они хорошо противостоят изнашиванию и кавитации.
Ковкими называются чугуны, в которых графит имеет хлопьевидную форму. Их получают отжигом белых доэвтектических чугунов. По этой причине графит ковких чугунов называют углеродом отжига. Такой графит, в отличие от пластинчатого, меньше снижает механические свойства металлической основы, вследствие чего ковкие чугуны по сравнению с серыми обладают более высокой прочностью и пластичностью.
Отливки из белых чугунов, подвергаемые отжигу на ковкие чугуны, изготовляют тонкостенными. Они не должны иметь сечение более 50 мм, иначе в сердцевине при кристаллизации выделяется пластинчатый графит, и чугун становится непригодным для отжига. По этой же причине исходные белые чугуны имеют пониженное содержание углерода и кремния. Их химический состав следующий, %: 2,4-2,9 С; 1,0-1,6 Si; 0,2-1,0 Мn; до 0,2 S и до 0,18 Р.
Отсутствие литейных напряжений, которые полностью снимаются во время отжига, компактная форма и изолированность графитных включений обусловливают высокие механические свойства ковких чугунов. Маркируют ковкие чугуны буквами КЧ и числами, первое из которых указывает уменьшенное в 10 раз значение σв, второе - значение δ. Из табл. 14.4 следует, что ферритные чугуны имеют более высокую пластичность, а перлитные - более высокие прочность и твердость.
Ковкие чугуны нашли широкое применение в сельскохозяйственном, автомобильном и текстильном машиностроении, в судо-, котло-, вагоно- и дизелестроении. Из них изготовляют детали высокой прочности, работающие в тяжелых условиях износа, способные воспринимать ударные и знакопеременные нагрузки. Большая плотность отливок позволяет делать из ковкого чугуна детали водо- и газопроводных установок, а хорошие литейные свойства исходного белого чугуна - производить отливки сложной формы.
Недостаток ковких чугунов - повышенная по сравнению с остальными чугунами стоимость из-за продолжительного дорогостоящего отжига.
