- •Введение.
- •1. Электростатика.
- •1.1 Электрическое поле.
- •1.2 Электрическая ёмкость и конденсаторы.
- •2. Электрические цепи постоянного тока.
- •2.1 Электрический ток, сопротивление, проводимость.
- •2.2 Электрическая энергия и мощность.
- •2.3 Расчёт электрических цепей постоянного тока. Основные понятия.
- •Первый закон Кирхгофа.
- •Второй закон Кирхгофа.
- •Способы соединения сопротивлений и расчет эквивалентного сопротивления электрической цепи.
- •Электрическая цепь с последовательным соединением элементов.
- •Электрическая цепь со смешанным соединением элементов.
- •2.4 Расчёт цепей методом преобразования.
- •Последовательное и параллельное включение источников питания.
- •2.5 Химические источники электрической энергии.
- •3. Электромагнетизм.
- •3.1. Магнитное поле постоянного тока.
- •3.2. Электромагнитная индукция.
- •4. Электрические цепи переменного однофазного тока.
- •4.1. Синусоидальный электрический ток.
- •Основные параметры переменного тока.
- •Цепь с резистивным элементом.
- •Цепь с индуктивностью.
- •Цепь с ёмкостью.
- •4.2. Цепь переменного тока с последовательным соединением элементов.
- •Треугольники напряжений при последовательном соединении r, l и с.
- •Ток, напряжение (а, б) и мощность (в) в цепи с сопротивлением, индуктивностью и ёмкостью.
- •4.3 Цепь переменного тока с параллельным соединением элементов.
- •Векторная диаграмма токов при параллельном соединении r, l и с.
- •Iа совпадает по фазе с напряжением, iс опережает по фазе напряжение на ¼ периода, il отстаёт по фазе от напряжения на ¼ периода.
- •Треугольники токов и проводимостей при параллельном соединении r, l и с.
- •4.4 Резонанс в электрических цепях переменного однофазного тока.
- •Резонанс напряжений.
- •Резонанс токов.
- •4.5 Комплексный метод расчета цепей синусоидального тока.
- •Закон Ома в комплексной форме.
- •Первый закон Кирхгофа в комплексной форме.
- •Второй закон Кирхгофа в комплексной форме.
- •Полная мощность в комплексной форме.
- •5. Трехфазные цепи.
- •5.1. Получение трехфазного тока.
- •Модель трехфазного генератора.
- •Принцип получения трёхфазного тока.
- •5.2. Расчет цепей трехфазного тока. Соединение фаз генератора и приемника звездой.
- •Симметричная нагрузка приемника при соединении звездой.
- •Несимметричная нагрузка приемника при соединении звездой.
- •Соединение фаз генератора и приемника треугольником.
- •Симметричная нагрузка.
- •Несимметричная нагрузка приемника.
- •6. Цепи несинусоидального тока.
- •6.1 Несинусоидальные токи.
- •Разложение периодических несинусоидальных кривых в тригонометрический ряд Фурье.
- •Спектральный состав периодических кривых.
- •Действующее значение несинусоидальной величины.
- •7. Электрические измерения.
- •7.1 Измерения. Стрелочные измерительные приборы. Основные понятия.
- •Погрешности средств измерений.
- •Стрелочные электроизмерительные приборы. Магнитоэлектрический измерительный механизм.
- •Электромагнитный измерительный механизм.
- •Электродинамический измерительный механизм.
- •Шкала стрелочного измерительного прибора.
- •Измерение больших токов и напряжений.
- •7.2 Измерение сопротивления, мощности, энергии. Цифровые приборы. Осциллограф. Измерение сопротивления методом амперметра и вольтметра.
- •Измерение больших сопротивлений мегаомметрами.
- •Измерение мощности.
- •Измерение электрической энергии.
- •Структурная схема цифрового измерительного прибора.
- •Осциллографы.
- •Двухканальный виртуальный осциллограф в обучающей компьютерной программе Electronics Workbench.
- •8. Электрические машины.
- •8.1 Трансформаторы.
- •Применение трансформаторов.
- •Принцип действия трансформатора.
- •Конструкция трансформаторов.
- •Обозначение на принципиальных схемах.
- •8.2 Электрические машины постоянного тока. Принцип действия генератора постоянного тока.
- •Принцип действия электродвигателя постоянного тока.
- •8.3 Электрические машины переменного тока.
- •Эдс генератора переменного тока
- •Синхронный тяговый генератор тепловоза 2тэ116 (продольный разрез)
- •Список использованных источников.
Обозначение на принципиальных схемах.
Центральная толстая линия соответствует сердечнику, 1 — первичная обмотка (обычно слева), 2,3 — вторичные обмотки. Число полуокружностей в очень грубом приближении символизирует число витков обмотки (больше витков — больше полуокружностей, но без строгой пропорциональности).
8.2 Электрические машины постоянного тока. Принцип действия генератора постоянного тока.
Генераторами называют электрические машины, преобразующие механическую энергию в электрическую. Принцип действия электрического генератора основан на использовании явления электромагнитной индукции. Если в магнитном поле постоянного магнита перемещать проводник так, чтобы он пересекал магнитный поток, то в проводнике возникнет электродвижущая сила э.д.с индукции. Если проводник, в котором индуктируется э.д.с, включить в замкнутую электрическую цепь, то под действием э.д.с. по цепи потечет ток, называемый индуктированным током.
Проводник в виде рамки из медной проволоки укреплен на оси и помещен в магнитное поле. Концы рамки присоединены к двум изолированным одна от другой половинам (полукольцам) одного кольца. Контактные пластины (щетки) скользят по этому кольцу. Такое кольцо, состоящее из изолированных полуколец, называют коллектором, а каждое полукольцо — пластиной коллектора. Щетки на коллекторе должны быть расположены таким образом, чтобы они при вращении рамки одновременно переходили с одного полукольца на другое как раз в те моменты, когда э.д.с, индуктируемая в каждой стороне рамки, равна нулю, т. е. когда рамка проходит свое горизонтальное положение. С помощью коллектора переменная э.д.с, индуктируемая в рамке, выпрямляется, и во внешней цепи создается постоянный по направлению ток.
График ЭДС генератора с одним витком.
Хотя этот ток остается постоянным по направлению, он меняется по величине, т. е. пульсирует. Что бы получить ток с небольшой пульсацией, представим генератор, состоящий из двух расположенных перпендикулярно один к другому витков. Начало и конец каждого витка присоединены к коллектору, состоящему теперь из четырех коллекторных пластин. График ЭДС будет иметь следующий вид.
Ток во внешней цепи генератора возникает в результате действия суммарной э.д.с. Ток будет пульсирующим, однако пульсация получается значительно меньше, чем при одном витке. Увеличивая число проводников (витков) генератора и соответственно число коллекторных пластин, можно сделать пульсации тока очень малыми, т. е. ток по величине станет практически постоянным. Но такой генератор имеет существенный недостаток. В каждый момент времени внешняя цепь присоединена посредством щеток лишь к одному витку генератора. Второй виток в этот же момент времени совершенно не используется. Электродвижущая сила, индуктируемая в одном витке, мала и мощность генератора будет небольшой. Для непрерывного использования всех витков их соединяют между собой последовательно. С этой же целью число коллекторных пластин уменьшают до количества витков обмотки. К каждой коллекторной пластине присоединяют конец одного и начало следующего витка обмотки. Витки в этом случае представляют собой последовательно соединенные источники электрического тока и образуют обмотку якоря генератора. Теперь электродвижущая сила генератора равна сумме э.д.с, индуктируемых в витках, включенных между щетками. Число витков берется достаточно большим, чтобы получить необходимую величину э.д.с. генератора.
Генератор, состоящие из постоянных магнитов и одного или нескольких витков, для практических целей непригодны, так как от них невозможно получить большую мощность из за того, что создаваемый постоянным магнитом магнитный поток очень мал. Поэтому в мощных генераторах применяются электромагниты, создающие сильный магнитный поток возбуждения. Для уменьшения магнитного сопротивления магнитопровода генератора витки обмотки размещают на стальном цилиндре, который заполняет почти все пространство между полюсами. Этот цилиндр с помещенной на нем обмоткой и коллектором называется якорем генератора.
Обмотка возбуждения генератора расположена на сердечниках главных полюсов. При прохождении по ней тока создается магнитное поле, называемое полем главных полюсов. При замыкании внешней цепи ток пойдет и по обмотке якоря. Весь якорь в этом случае будет представлять собой мощный электромагнит. Следовательно, кроме потока полюсов, в нагруженном генераторе существует второй магнитный поток, называемый потоком якоря. Поток якоря направлен перпендикулярно потоку главных полюсов. Оба магнитных потока накладываются друг на друга и образуют суммарное поле. Направление магнитного поля генератора в результате действия поля якоря смещается в сторону вращения якоря. Влияние магнитного поля якоря на поле полюсов называется реакцией якоря. Поэтому приходится смещать щетки генератора на некоторый угол, иначе между щетками и коллектором возникает сильное искрение. Чем больше ток якоря, тем сильнее проявляется реакция якоря, тем на больший угол необходимо сдвигать щетки.
Реакция якоря не только смещает магнитное поле главных полюсов, но и частично ослабляет его, что приводит к уменьшению индуктируемой генератором э. д. с. Для ослабления реакции якоря в генераторах между основными полюсами устанавливаются добавочные полюсы. Они создают дополнительное магнитное поле, которое в зонах установки щеток направлено навстречу полю якоря, и действие его нейтрализуется.
Тяговый генератор тепловоза 2ТЭ10Л
