- •Введение.
- •1. Электростатика.
- •1.1 Электрическое поле.
- •1.2 Электрическая ёмкость и конденсаторы.
- •2. Электрические цепи постоянного тока.
- •2.1 Электрический ток, сопротивление, проводимость.
- •2.2 Электрическая энергия и мощность.
- •2.3 Расчёт электрических цепей постоянного тока. Основные понятия.
- •Первый закон Кирхгофа.
- •Второй закон Кирхгофа.
- •Способы соединения сопротивлений и расчет эквивалентного сопротивления электрической цепи.
- •Электрическая цепь с последовательным соединением элементов.
- •Электрическая цепь со смешанным соединением элементов.
- •2.4 Расчёт цепей методом преобразования.
- •Последовательное и параллельное включение источников питания.
- •2.5 Химические источники электрической энергии.
- •3. Электромагнетизм.
- •3.1. Магнитное поле постоянного тока.
- •3.2. Электромагнитная индукция.
- •4. Электрические цепи переменного однофазного тока.
- •4.1. Синусоидальный электрический ток.
- •Основные параметры переменного тока.
- •Цепь с резистивным элементом.
- •Цепь с индуктивностью.
- •Цепь с ёмкостью.
- •4.2. Цепь переменного тока с последовательным соединением элементов.
- •Треугольники напряжений при последовательном соединении r, l и с.
- •Ток, напряжение (а, б) и мощность (в) в цепи с сопротивлением, индуктивностью и ёмкостью.
- •4.3 Цепь переменного тока с параллельным соединением элементов.
- •Векторная диаграмма токов при параллельном соединении r, l и с.
- •Iа совпадает по фазе с напряжением, iс опережает по фазе напряжение на ¼ периода, il отстаёт по фазе от напряжения на ¼ периода.
- •Треугольники токов и проводимостей при параллельном соединении r, l и с.
- •4.4 Резонанс в электрических цепях переменного однофазного тока.
- •Резонанс напряжений.
- •Резонанс токов.
- •4.5 Комплексный метод расчета цепей синусоидального тока.
- •Закон Ома в комплексной форме.
- •Первый закон Кирхгофа в комплексной форме.
- •Второй закон Кирхгофа в комплексной форме.
- •Полная мощность в комплексной форме.
- •5. Трехфазные цепи.
- •5.1. Получение трехфазного тока.
- •Модель трехфазного генератора.
- •Принцип получения трёхфазного тока.
- •5.2. Расчет цепей трехфазного тока. Соединение фаз генератора и приемника звездой.
- •Симметричная нагрузка приемника при соединении звездой.
- •Несимметричная нагрузка приемника при соединении звездой.
- •Соединение фаз генератора и приемника треугольником.
- •Симметричная нагрузка.
- •Несимметричная нагрузка приемника.
- •6. Цепи несинусоидального тока.
- •6.1 Несинусоидальные токи.
- •Разложение периодических несинусоидальных кривых в тригонометрический ряд Фурье.
- •Спектральный состав периодических кривых.
- •Действующее значение несинусоидальной величины.
- •7. Электрические измерения.
- •7.1 Измерения. Стрелочные измерительные приборы. Основные понятия.
- •Погрешности средств измерений.
- •Стрелочные электроизмерительные приборы. Магнитоэлектрический измерительный механизм.
- •Электромагнитный измерительный механизм.
- •Электродинамический измерительный механизм.
- •Шкала стрелочного измерительного прибора.
- •Измерение больших токов и напряжений.
- •7.2 Измерение сопротивления, мощности, энергии. Цифровые приборы. Осциллограф. Измерение сопротивления методом амперметра и вольтметра.
- •Измерение больших сопротивлений мегаомметрами.
- •Измерение мощности.
- •Измерение электрической энергии.
- •Структурная схема цифрового измерительного прибора.
- •Осциллографы.
- •Двухканальный виртуальный осциллограф в обучающей компьютерной программе Electronics Workbench.
- •8. Электрические машины.
- •8.1 Трансформаторы.
- •Применение трансформаторов.
- •Принцип действия трансформатора.
- •Конструкция трансформаторов.
- •Обозначение на принципиальных схемах.
- •8.2 Электрические машины постоянного тока. Принцип действия генератора постоянного тока.
- •Принцип действия электродвигателя постоянного тока.
- •8.3 Электрические машины переменного тока.
- •Эдс генератора переменного тока
- •Синхронный тяговый генератор тепловоза 2тэ116 (продольный разрез)
- •Список использованных источников.
Полная мощность в комплексной форме.
При использовании символического метода можно пользоваться понятиями мощностей. Но в комплексной форме можно записать только полную мощность:
где Ï — комплексно-сопряженный ток
S cos φ ± j S sin φ = P ± j Q
Полная мощность в комплексной форме представляет собой комплексное число, вещественная часть которого соответствует активной мощности рассматриваемого участка, а коэффициент при мнимой части – реактивной мощности участка. Значение знака перед мнимой частью: “+” означает, что напряжение опережает ток, нагрузка – активно-индуктивная; “–” означает, что нагрузка - активно-емкостная.
5. Трехфазные цепи.
5.1. Получение трехфазного тока.
Трехфазная цепь является частным случаем многофазных систем электрических цепей, представляющих собой совокупность электрических цепей, в которых действуют синусоидальные ЭДС одинаковой частоты, отличающиеся по фазе одна от другой и создаваемые общим источником энергии.
Каждую из частей многофазной системы, характеризующуюся одинаковым током, принято называть фазой. Цепи в зависимости от количества фаз называют двухфазными, трехфазными, шестифазными и т.п.
Трехфазные цепи – наиболее распространенные в современной электроэнергетике. Это объясняется их преимуществами по сравнению с однофазными и с другими многофазными цепями:
экономичность производства и передачи энергии по сравнению с однофазными цепями;
возможность сравнительно простого получения кругового вращающегося магнитного поля, необходимого для трехфазного асинхронного двигателя;
возможность получения в одной установке двух эксплуатационных напряжений – фазного и линейного.
Трехфазная цепь состоит из трех основных элементов: трехфазного генератора, в котором механическая энергия преобразуется в электрическую с трехфазной системой ЭДС; линии передачи со всем необходимым оборудованием; приемников (потребителей), которые могут быть как трехфазными (например, трехфазные асинхронные двигатели), так и однофазными (например, лампы накаливания).
Модель трехфазного генератора.
На статоре генератора размещается обмотка, состоящая из трех частей или, как их принято называть, фаз. Обмотки фаз располагаются на статоре таким образом, чтобы их магнитные оси были сдвинуты в пространстве относительно друг друга на угол 2π/3, т.е. на 120°. На рисунке каждая фаза обмотки статора условно показана состоящей из одного витка. Начала фаз обозначены буквами A, B и C, а концы – X, Y, Z. Ротор представляет собой электромагнит, возбуждаемый постоянным током обмотки возбуждения, расположенной на роторе.
Принцип получения трёхфазного тока.
При вращении ротора турбиной с равномерной скоростью в обмотках фаз статора индуктируются периодически изменяющиеся синусоидальные ЭДС одинаковой частоты и амплитуды, но отличающиеся друг от друга по фазе на 120° вследствие их пространственного смещения.
За условное положительное направление ЭДС в каждой фазе принимают направление от конца к началу. Обычно индуктированные в обмотках статора ЭДС имеют одинаковые амплитуды и сдвинуты по фазе относительно друг друга на один и тот же угол 120°. Такая система ЭДС называется симметричной.
Если ЭДС одной фазы (например, фазы A) принять за исходную и считать её начальную фазу равной нулю, то выражения мгновенных значений ЭДС можно записать в виде
eA=Emsin ωt, eB=Emsin(ωt−120°), eC=Emsin(ωt−240°)=Emsin(ωt+120°).
