
- •Оглавление
- •Предисловие
- •Введение
- •Модуль 1. Структура и методы синтеза полимеров
- •1.1. Структура макромолекул.
- •Гетероцепные полимеры различных классов:
- •Энергия различных связей между структурными единицами макромолекулы:
- •Показатели термодинамической гибкости полимеров в конформации макромолекулярного клубка:
- •1.2. Надмолекулярная структура
- •1.3. Свободнорадикальная полимеризация
- •1.4. Ионная полимеризация
- •Типы структур полибутадиена и полиизопрена, получаемые на катализаторах Циглера-Натта
- •1.5. Сополимеризация
- •1.6. Ступенчатые реакции синтеза полимеров.
- •1.7. Технологическое оформление синтеза промышленных полимеров
- •Контрольные вопросы к главе 1.
- •Модуль 2. Физические свойства полимеров.
- •2.1. Физические и фазовые состояния и переходы.
- •Зависимость мгновенного и истинного удлинений от относительного удлинения при деформации растяжения:
- •2.2. Термодинамика высокоэластической деформации.
- •2.3. Релаксационные свойства полимеров.
- •2.4. Стеклование и стеклообразное состояние.
- •2.5. Механические свойства кристаллических полимеров.
- •2.6. Теории разрушения и долговечность полимеров.
- •2.7. Реология расплавов и растворов полимеров.
- •Молекулярная масса возникновения флуктуационной сетки ряда промышленных полимеров:
- •Контрольные вопросы к главе 2.
- •Модуль 3. Основные химические свойства полимеров и реакции в полимерных цепях
- •3.1. Особенности химических реакций в полимерах.
- •3.2. Деструкция полимеров под действием тепла и химических сред.
- •Теплоты полимеризации и температуры начала термораспада для различных полимеров:
- •3.3. Химические реакции, протекающие
- •При действии света и ионизирующих излучений.
- •3.4. Механохимические реакции в полимерах.
- •Энергия когезии участка цепи длиной 0,5 нм и число звеньев
- •3.5. Реакции полимеров с кислородом и озоном.
- •3.6. Формирование сетчатых структур в полимерах.
- •Контрольные вопросы к главе 3.
- •Библиографический список
3.4. Механохимические реакции в полимерах.
При перемешивании воды или бензола в какой-либо емкости никакие химические реакции не идут. Протекание химических реакций при воздействии механических напряжений характерно только для макромолекул и связано с превышением суммарной энергии слабых физических взаимодействий между их звеньями над энергией химической связи в главной цепи. Величины энергии и длины различных типов связей (табл.1.2) позволяют сделать вывод, что суммарная энергия даже слабых ван-дер-ваальсовых физических связей на протяжении 100-150 звеньев макромолекулы малополярных полимеров превысит энергию ковалентной С-С-связи в основной цепи. Очевидно, при сближении отдельных участков макромолекулы в поле механических напряжений возрастает суммарная энергия межмолекулярного взаимодействия их друг с другом (рис.3.1). Когда суммарная энергия связей сблизившихся участков цепи превысит энергию ковалентной С-С-связи, последняя разорвется.
Рис.3.1. Конформация макромолекулярного клубка исходного аморфного полимера (а)
и при разрушении флуктуационной сетки (б) в поле сдвиговых напряжений
(растяжение по оси О-О` и сжатие по оси Р-Р`).
Механодеструкция приводит не только к снижению ММ полимера до некоторой величины, которая определяется соотношением суммарной энергии физических межмолекулярных взаимодействий и энергии химической связи в основной цепи. Выравниваются размеры макромолекул до этой величины, т.е. изменяется вид кривой молекулярно-массового распределения (рис.3.2). Молекулы малых размеров участвуют лишь в механическом перемешивании.
Рис.3.2. Снижение молекулярной массы (а) и изменение ММР (б) полимера в результате деструкции от времени механической обработки τ: 1-исходное ММР; 2-4-ММР после пластикации на вальцах при различной продолжительности τ (τ2> τ3> τ4).
Процессы механодеструкции протекают при переработке полимеров на вальцах, в экструдере или резиносмесителе, где в поле сдвиговых напряжений интенсивно снижаются ММ и вязкость, что облегчает их последующую переработку. Эти процессы ускоряются реакциями макрорадикалов с низкомолекулярными акцепторами свободных радикалов, специально вводимых в полимерную матрицу или присутствующих в ней в виде примесей. Предельно низкое значение ММ (М∞), достигаемое при механической обработке, называется пределом механодеструкции. Полимеры сильно различаются по эффективности механодеструкции, которая тесно связана с плотностью энергии когезии (табл.3.3).
Таблица 3.3.
Энергия когезии участка цепи длиной 0,5 нм и число звеньев
на отрезке цепи длиной 5 нм для ряда промышленных полимеров
Полимер |
Энергия когезии, кДж/моль |
Число звеньев |
Полиэтилен |
4,19 |
3 |
Полиизобутилен |
4,51 |
1 |
Полиизопрен |
5,44 |
1 |
Поливинилхлорид |
10,87 |
2-3 |
Поливиниловый спирт |
17,56 |
2-3 |
Полиамид |
24,25 |
1 |
Белок (шелк) |
41,00 |
1 |
На разрушение физических связей влияет температура, и от нее сильно зависит эффект механодеструкции. При низких температурах механическим силам труднее преодолевать силы взаимодействия между макромолекулами полимера из-за отсутствия проскальзывания между ними, а с повышением температуры эффект скольжения макромолекул возрастает. Следовательно, механодеструкция имеет отрицательный температурный коэффициент, т.е. число актов разрывов химических связей в главных цепях растет с понижением температуры. Наиболее существенные факторы, влияющие на эффективность механодеструкции полимеров, суммированы в табл. 3.4.
Таблица 3.4.
Влияние различных факторов на эффективность механодеструкции.
Факторы, влияющие на механодеструкцию |
Показатели эффективности механодеструкции |
|
Скорость механодеструкции |
Предел механодеструкции |
|
Рост температуры |
Снижается |
Увеличивается |
Рост ММ (вязкости) |
Растет |
Не влияет |
Интенсивность сдвига |
Растет |
Уменьшается |
Наибольшая скорость механодеструкции достигается в стеклообразном состоянии полимеров, средняя – в высокоэластическом состоянии и наименьшая – в вязкотекучем. В таком же порядке уменьшается величина механических напряжений, которые надо приложить к полимеру, чтобы вызвать разрыв или проскальзывание его макромолекул. Следовательно, в полимерах можно осуществить прямое превращение механической энергии в химическую энергию, так как образующиеся активные осколки макромолекул (радикалы) инициируют реакции полимеризации мономеров с активными участками других макромолекул, с кислородом или низкомолекулярными добавками. В ряде случаев могут образовываться разветвленные и сшитые структуры. Путем механической обработки смесей полимеров или полимеров с жидкими мономерами получают блок- и привитые сополимеры. Таким образом, этот сравнительно недорогой и доступный и при этом весьма эффективный прием обработки позволяет проводить химическую модификацию полимеров.
Механические напряжения могут активировать химические реакции в полимерах, когда они и не разрывают макромолекулы. Например, образцы эластомеров и их вулканизатов быстро разрушаются в присутствии небольших количеств озона, если находятся в растянутом состоянии. При приложении многократных деформирующих напряжений быстрее протекает взаимодействие полимеров с кислородом, приводящее к разрыву макромолекул. Механическая активация химических реакций в полимерах объясняется изменением их направления (например, распада озонидов) и ускорением роста трещин.
Помимо разрыва основной цепи, при механическом воздействии могут разрываться химические поперечные связи в сетчатых полимерных структурах с образованием осколков, которые уже могут растворяться. На этом принципе основан один из методов регенерации резин в целях получения пластичного формуемого материала, который может перерабатываться в изделия наравне с исходными полимерами. Принцип механического измельчения с механодеструкцией широко используют для переработки полимерных отходов с целью придания им второй жизни в новых полимерных изделиях.
В полибутадиене развитие механохимических реакций начинается с образования первичных радикалов, которые участвуют в химических реакциях друг с другом и рекомбинируют с образованием поперечных связей между макромолекулами. Идут также реакции присоединения радикалов по двойным связям соседних макромолекул с образованием ответвлений или реакции отрыва водорода от макромолекул с образованием новых радикалов:
~СН2-СН=СН-С*Н2 + ~СН2-СН=СН-СН2~ → ~СН2-СН=СН-СН3 + ~С*Н-СН=СН-СН2~
В обоих случаях образуются полимерные свободные радикалы, которые могут участвовать в дальнейших реакциях образования разветвленных структур:
или рекомбинации с образованием поперечной связи между макромолекулами:
В полиэтилене механокрекинг приводит к химическим реакциям:
~СН2-СН2-СН2-СН2~→~СН2-С*Н2 + С*Н2-СН2~→~СН=СН2 + СН3-СН2~
или ~СН2-С*Н2 + ~СН2-СН2~→~СН2-СН3 + ~СН2-С*Н~.
При механическом смешении полимеров с наполнителями свободные радикалы образуют химические связи полимер-наполнитель. Так, химические связи эластомера с техуглеродом приводят к образованию гелеобразных структур. Первичные радикалы могут стабилизироваться ограничением подвижности стеклообразным состоянием, сохранив способность к последующим реакциям:
Барамбойм предложил классификацию механохимических процессов по направленности превращений полимеров и результатам этих превращений:
механодеструкция – разрыв линейных макромолекул со снижением молекулярной массы и полидисперсности и развитие реакций разветвления;
механосшивание – соединение вторичных макрорадикалов и формирование сетчатой структуры полимера;
механосинтез – присоединение к первичным и вторичным радикалам полимеризующихся молекул мономера, свободных радикалов другого полимера, химическое присоединение полимера к частицам наполнителя;
механоактивация химических реакций в полимерах (разложение, замещение, присоединение и др.), когда механические напряжения лишь снижают энергию активации таких реакций;
механохимическое течение – разрушение сетчатых полимеров в поле механических сил, приводящее к образованию новых структур в таких полимерах и позволяющее вовлекать их в процессы переработки наряду с линейными полимерами.
Помимо рассмотренных наиболее простых механических воздействий на полимеры, приводящих к развитию в них химических реакций, существует и ряд других видов воздействий, вызывающих механическое разрушение химических связей. Сюда относятся процессы дробления и измельчения, действие ультразвука, высоких давлений и др. В зависимости от вида механического воздействия наблюдаются различия в явлениях, которые они вызывают. При одноосной деформации преобладают сдвиговые и растягивающие усилия, приводящие в итоге к разрыву макромолекул. При смешении, вальцевании и экструзии действуют различные скорости сдвига. При высокоскоростных воздействиях преобладают ударные эффекты, например при измельчении полимеров. При действии ультразвука развиваются высокочастотные колебания. Все эти воздействия приводят к деструкции макромолекул. Таким образом, механохимические процессы и их конечные результаты зависят от природы источников механических усилий.