Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Software Engineering2011.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.12 Mб
Скачать

Символьный подход

Исторически символьный подход был первым в эпоху цифровых машин, так как именно после создания Лисп, первого языка символьных вычислений, у его автора возникла уверенность в возможности практически приступить к реализации этими средствами интеллекта. От умения выделить только существенную информацию зависит эффективность и результативность решения задачи. Основное применение символьной логики — это решение задач по выработке правил. Большинство исследований останавливается как раз на невозможности хотя бы обозначить новые возникшие трудности средствами выбранных на предыдущих этапах символьных системах. Тем более решить их и тем более обучить компьютер решать их или хотя бы идентифицировать и выходить из таких ситуаций.

Логический подход

Логический подход к созданию систем искусственного интеллекта направлен на создание экспертных систем с логическими моделями баз знаний с использованием языка предикатов. Учебной моделью систем искусственного интеллекта в 1980-х годах был принят язык и система логического программирования Пролог.

Накопление и использование знаний

Согласно мнению многих учёных, важным свойством интеллекта является способность к обучению. К области машинного обучения относится большой класс задач на распознавание образов. Например, это распознавание символов, рукописного текста, речи, анализ текстов. Многие задачи успешно решаются с помощью биологического моделирования. Особо стоит упомянуть компьютерное зрение, которое связано ещё и с робототехникой.

Машинное обучение и самообучение - этому вопросу уделяется сегодня огромное, если не главное, внимание в сфере искусственного интеллекта. Существует множество алгоритмов машинного обучения. Один из самых распространенных — алгоритмы класса С4. Эти алгоритмы позволяют выстраивать сложное древо решений и анализировать его. С каждой ветвью древа ассоциируется определенный класс примеров решения проблемы. В процессе решения классы могут разбиваться на подклассы. Завершение работы алгоритма — принятие того или иного решения, удовлетворяющего потребностям задачи. Недостаток такого алгоритма — ограниченность примеров решения проблемы.

Суть процесса искусственного мышления

Cуть процесса мышления заключается в следующем: по мере наращивания своего мировосприятия человек либо автоматическое устройство приобретает все большие возможности для воспроизводства собственных умозаключений. Эти умозаключения генерируются при решении задач для определения способа достижения поставленной цели. Для этого обычно необходимо выстроить логическую цепочку, начинающуюся на мировосприятии и заканчивающуюся на конкретной цели. Если задача обратная, то цепочку необходимо строить с цели. Сегодня существуют различные принципы построения систем искусственного интеллекта. Среди них — моделирование рассуждений на основе прецедентов (case-base reasoning — CBR), моделирование рассуждений с неопределенностью, рассуждения о действиях и изменениях и т.д. К примеру, в основе CBR — принципа построения ИИ — лежит выбор проблемы, поиск алгоритмов адаптации, поиск прошлого опыта, вывод, основанный на оценке сходства. После установки цели система должна рассмотреть множество случаев и вариантов решения проблемы, а затем выработать искомое решение.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]