Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lk_2.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
2.53 Mб
Скачать

IV. Застосування математичної логіки

20. Обернене та протилежне твердження

Розглянемо кілька тверджень, що одержуються з простих тверджень А та В за допомогою операцій імплікації та заперечення.

1. А  В – пряме твердження

2. В  А – обернене твердження

3.А В – протилежне твердження

4.В А – обернене до протилежного або протилежне до оберненого

Твердженнями такої логічної форми ми багато раз користувались при вивченні математики. Виникає питання: які з цих тверджень між собою логічно еквівалентні? На жаль, тільки не велика кількість тих, хто почав вивчати математичну логіку, мають розвинену логічну інтуїцію і правильно відповідають на це питання. Більшість вважають, що логічно еквівалентні твердження 1-2, 1-3 або 2-4. Кілька хвилин достатньо, щоб скласти таблицю істинності і правильно відповісти на поставлене питання.

А В

А

В

А  В

В А

А В

В А

0 0

0 1

1 0

1 1

1

1

0

0

1

0

1

0

1

1

0

1

1

0

1

1

1

0

1

1

1

1

0

1

Бачимо, що А  В =В А та В  А =А В тобто, логічно еквівалентні пряме твердження і обернене до протилежного та обернене і протилежне твердження. Як легко побачити, тут немає двох видів зв’язку між логічними формами, тут тільки один вид зв’язку, бо з першого твердження одержується четверте точно так же, як з другого одержується трете твердження.

Більшість логічних помилок при вивченні математики пов’язана з нерозумінням того, що перше і друге твердження (А  В, В  А ) не є логічно еквівалентними, їх не можна підміняти одне одним. Такі помилки не випадкові, бо логічний аналіз шкільного підручника геометрії [5] говорить про те, що цим питанням не приділено достатньо уваги.

21. Необхідна та достатня умови

Введемо позначення: D – достатня умова, Т – твердження, N – необхідна умова.

Означення. Достатньою умовою по відношенню до деякого твердження називають таку умову, з якої це твердження випливає.

Цьому означенню відповідає формула DT

Означення. Необхідною умовою по відношенню до деякого твердження називають таку умову, яка з цього твердження випливає.

Цьому означенню відповідає формула TN

Пригадуючи зв’язок між прямим твердженням та оберненим до протилежного маємо:

Саме в формі заперечення використовують практично означення необхідної умови, і в такій же формі воно зустрічається в математичній літературі.

Означення. Необхідною умовою по відношенню до деякого твердження називають таку умову, при невиконанні якої твердження не виконується)

Проаналізуємо форму теорем з необхідною і достатньою умовами.

Теорема. Для А необхідно і досить В.

В цій теоремі А є твердженням по відношенню до якого В є як необхідною, так і достатньою умовами. За означенням, з твердження випливає необхідна умова. Тому маємо:

Необхідність. А  В.

За означенням достатньої умови, з достатньої умови випливає твердження. Тому маємо:

Достатність. В  А.

В шкільній математиці поняття необхідної і достатньої умов використовуються так, що вони завжди виражаються одним і тим самим твердженням. Створюється помилкове враження, що необхідна умова завжди є достатньою і навпаки. Тому корисними є приклади в яких необхідна умова не є достатньою і достатня не є необхідною.

Достатня умова

Твердження

Необхідна умова

Сума цифр числа 3

Число 9

Число = 15

Число = 10 × 10 -1

Число 3

Число 3

Число 3

Число 3

Сума цифр числа 3

Число > 2

Число ≠ 7

Число не є простим

Тотожність (D  T)(T  N)  (D  N)  1 (ДС) виражає те, що для фіксованого твердження з любої достатньої умови випливають всі необхідні умови.

Поняття необхідної і достатньої умови є відносними, вони визначаються по відношенню до деякого твердження. Якщо потрібно визначити яка умова використовується в змістовній формі, то спочатку знаходимо твердження, а потім визначаємо яка це умова. Наприклад, в теоремі А → В, якщо Т = А, то В = N, а якщо Т = В, то А = D.

DTN – ключ для пригадування означень DT та TN.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]