
- •Федеральное агентство по образованию
- •М.Я. Кордон, в.И. Симакин, и.Д. Горешник гидравлика
- •Часть I. Гидравлика
- •1 Основные физические свойства жидкостей
- •1.1. Модель сплошной среды
- •1.2. Плотность жидкости
- •1.3. Сжимаемость капельной жидкости
- •1.4. Температурное расширение капельных жидкостей
- •1.5. Вязкость жидкости
- •1.6. Испаряемость жидкости
- •1.7. Растворяемость газов в жидкостях
- •Примеры
- •Контрольные вопросы
- •2. Основы гидростатики
- •2.1. Основные сведения
- •2.2. Гидростатическое давление
- •2.3. Основная теорема гидростатики
- •2.4. Условие равновесия жидкости
- •2.5. Дифференциальное уравнение равновесия жидкости (Уравнение Эйлера)
- •2.6. Основное дифференциальное уравнение гидростатики
- •Контрольные вопросы
- •2.7. Поверхность уровня
- •2.8. Равновесие жидкости в поле земного тяготения
- •2.9. Основное уравнения равновесия жидкости в поле земного тяготения. Закон Паскаля
- •Примеры
- •Контрольные вопросы
- •2.10. Относительное равновесие жидкости в поле сил тяготения
- •2.11. Приборы для измерения давления
- •2.15. Равновесие тела в покоящейся жидкости. Закон Архимеда
- •Примеры
- •Контрольные вопросы
- •3. Основы кинематики и динамики жидкости
- •3.1. Основные понятия и определения кинематики и динамики жидкости
- •3.2. Гидравлические элементы потока
- •3.3. Геометрические характеристики потока
- •3.4. Трубка тока и элементарная струйка
- •3.5. Расход и средняя скорость потока
- •3.6. Условие неразрывности, или сплошности движения жидкости
- •3.7. Методы исследования движения жидкости
- •3.8. Уравнение Эйлера
- •Контрольные вопросы
- •3.9. Интегрирование уравнения Эйлера для установившегося движения жидкости
- •3.10. Уравнение Бернулли для потока реальной жидкости
- •3.11. Практическое применение уравнения Бернулли
- •Примеры
- •Контрольные вопросы
- •3.12. Гидравлические сопротивления. Режимы движения жидкости
- •3.13. Потери напора при равномерном движении
- •3.14. Способы определения потерь напора при равномерном движении жидкости
- •3.15. Местные гидравлические сопротивления
- •Примеры
- •Контрольные вопросы
- •4. Гидравлический расчет истечения жидкостей
- •4.1. Общая характеристика истечения
- •4.2. Истечение жидкости из отверстия в тонкой стенке
- •4.3. Истечение при переменном напоре
- •Примеры
- •Контрольные вопросы
- •4.4. Истечение жидкости через насадки
- •4.5. Зависимость коэффициентов истечения от числа Рейнольдса
- •4.6. Вакуум в цилиндрическом насадке
- •4.7. Практическое применение насадков
- •Примеры
- •Контрольные вопросы
- •5. Гидравлический удар в трубах
- •5.1. Физическая сущность гидравлического удара
- •5.2. Определение ударного давления и скорости распространения ударной волны
- •5.3. Способы гашения и примеры использования гидравлического удара
- •Примеры
- •Контрольные вопросы
- •6. Гидравлический расчет трубопроводов
- •6.1. Классификация трубопроводов
- •6.2. Система уравнений и задачи гидравлического расчета трубопроводов
- •6.3. Метод расчета простых трубопроводов
- •6.4. Методы расчета сложных трубопроводов
- •6.4.1. Методы расчета по удельным гидравлическим сопротивлениям
- •7. Основы теории подобия, моделирования и анализа размерностей
- •7.1. Основные положения
- •7.2. Законы механического подобия
- •7.2.1. Геометрическое подобие
- •7.2.2. Кинематическое подобие
- •7.2.3. Динамическое подобие
- •7.3. Гидродинамические критерии подобия
- •Контрольные вопросы
- •7.4. Физическое моделирование
- •Примеры
- •7.5. Анализ размерностей. -теорема
- •Примеры
- •Для второго -члена имеем
- •Контрольные вопросы
- •8. Основы движения грунтовых вод и двухфазных потоков
- •8.1. Движение грунтовых вод. Основные понятия движения грунтовых вод.
- •8.2. Скорость фильтрации. Формула Дарси
- •8.3. Коэффициент фильтрации и методы его определения
- •8.4. Ламинарная и турбулентная фильтрация
- •8.6. Фильтрация через однородную земляную среду
- •8.7. Особенности гидравлики двухфазных потоков
- •8.7.1. Виды течений двухфазных потоков жидкости и газа
- •Тогда объемный расход смеси равен сумме объемных расходов фаз:
- •В одномерном приближении можно записать:
- •Истинная скорость жидкой фазы равна:
- •Величины иназываются приведенными скоростями фаз.
- •8.7.3. Истинное объемное паросодержание адиабатных двухфазных потоков.
- •8.7.4. Гидравлическое сопротивление двухфазных потоков
7. Основы теории подобия, моделирования и анализа размерностей
7.1. Основные положения
Решение дифференциальных уравнений гидродинамики охватывает ограниченный круг задач. В ряде случаев аналитическое решение сопряжено со значительными математическими трудностями. В частности, не всегда можно получить удовлетворительный результат и с помощью численных методов. В таких случаях на помощь приходят экспериментальные методы исследования.
Цель этих исследований состоит в том, чтобы получить данные, необходимые для расчета других процессов, родственных изучаемому.
Эксперименты проводятся на специально создаваемых модельных установках, моделирующих определенным образом исследуемые устройства и протекающие в них физические процессы.
Известны физический и математический методы моделирования.
При физическом моделировании исследуемая модель обычно выполняется в меньшем масштабе, чем оригинал (натура), и воспроизводит изучаемое явление с сохранением его физической природы.
Математическое моделирование осуществляется путем изучения явлений, имеющих иное, чем исследуемый процесс, физическое содержание, но описываемых аналогичными математическими уравнениями.
7.2. Законы механического подобия
Полученные на модели результаты опытных исследований обобщаются и затем переносятся на натуру. Выполнение этой процедуры требует знаний законов, связывающих между собой величины, полученные при исследованиях на модели, и соответствующие им величины в натуре.
Эти законы называются законами подобия. Они устанавливают определенные соотношения между геометрическими размерами, кинематическими и динамическими характеристиками потоков в модели и натуре.
Законы подобия подробно изучаются в специальных курсах теории подобия и моделирования.
Следует отметить, что теория подобия имеет большое теоретическое и практическое значение не только для моделирования различных явлений и процессов, но и прежде всего для научного обоснования экспериментальных исследований, обработки их результатов и построения на их основе рациональных эмпирических формул.
Следует иметь в виду, что динамическое или вообще физическое подобие является обобщением геометрического подобия.
Рассмотрим способы получения масштабных коэффициентов для геометрического, кинематического и динамического подобия.
7.2.1. Геометрическое подобие
Пусть имеем натурный объект (поток) (рис. 7.1), подлежащий гидродинамическому исследованию, и его модель.
Рис. 7.1
Обозначим геометрические размеры объекта (натурного потока) индексом 1, а модельного – индексом 2.
Чтобы получить область течения в модели, геометрически подобную натурному потоку, разделим все линейные размеры натурного потока на некоторое число k, которое называется линейным масштабом. Таким образом получаем связь между геометрическими размерамиа1иа2,b1 и b2, в виде равенств:
. (7.1)
Линейные размеры, связанные соотношением (7.1), называют соответственными, или сходственными.
Точки, координаты которых удовлетворяют этому соотношению, называют сходственными.
Безразмерные координаты сходственных точек одинаковы.
Обычно за единицу измерения всех линейных величин в соответствующих потоках принимают L1(натура),L2(модель) и находят линейный масштабkl:
. (7.2)
Для площадей и объемов соответственно имеем:
(7.3)
Очевидно, что для геометрических подобных потоков необходима пропорциональность соответствующих площадей и объемов.