
- •Федеральное агентство по образованию
- •М.Я. Кордон, в.И. Симакин, и.Д. Горешник гидравлика
- •Часть I. Гидравлика
- •1 Основные физические свойства жидкостей
- •1.1. Модель сплошной среды
- •1.2. Плотность жидкости
- •1.3. Сжимаемость капельной жидкости
- •1.4. Температурное расширение капельных жидкостей
- •1.5. Вязкость жидкости
- •1.6. Испаряемость жидкости
- •1.7. Растворяемость газов в жидкостях
- •Примеры
- •Контрольные вопросы
- •2. Основы гидростатики
- •2.1. Основные сведения
- •2.2. Гидростатическое давление
- •2.3. Основная теорема гидростатики
- •2.4. Условие равновесия жидкости
- •2.5. Дифференциальное уравнение равновесия жидкости (Уравнение Эйлера)
- •2.6. Основное дифференциальное уравнение гидростатики
- •Контрольные вопросы
- •2.7. Поверхность уровня
- •2.8. Равновесие жидкости в поле земного тяготения
- •2.9. Основное уравнения равновесия жидкости в поле земного тяготения. Закон Паскаля
- •Примеры
- •Контрольные вопросы
- •2.10. Относительное равновесие жидкости в поле сил тяготения
- •2.11. Приборы для измерения давления
- •2.15. Равновесие тела в покоящейся жидкости. Закон Архимеда
- •Примеры
- •Контрольные вопросы
- •3. Основы кинематики и динамики жидкости
- •3.1. Основные понятия и определения кинематики и динамики жидкости
- •3.2. Гидравлические элементы потока
- •3.3. Геометрические характеристики потока
- •3.4. Трубка тока и элементарная струйка
- •3.5. Расход и средняя скорость потока
- •3.6. Условие неразрывности, или сплошности движения жидкости
- •3.7. Методы исследования движения жидкости
- •3.8. Уравнение Эйлера
- •Контрольные вопросы
- •3.9. Интегрирование уравнения Эйлера для установившегося движения жидкости
- •3.10. Уравнение Бернулли для потока реальной жидкости
- •3.11. Практическое применение уравнения Бернулли
- •Примеры
- •Контрольные вопросы
- •3.12. Гидравлические сопротивления. Режимы движения жидкости
- •3.13. Потери напора при равномерном движении
- •3.14. Способы определения потерь напора при равномерном движении жидкости
- •3.15. Местные гидравлические сопротивления
- •Примеры
- •Контрольные вопросы
- •4. Гидравлический расчет истечения жидкостей
- •4.1. Общая характеристика истечения
- •4.2. Истечение жидкости из отверстия в тонкой стенке
- •4.3. Истечение при переменном напоре
- •Примеры
- •Контрольные вопросы
- •4.4. Истечение жидкости через насадки
- •4.5. Зависимость коэффициентов истечения от числа Рейнольдса
- •4.6. Вакуум в цилиндрическом насадке
- •4.7. Практическое применение насадков
- •Примеры
- •Контрольные вопросы
- •5. Гидравлический удар в трубах
- •5.1. Физическая сущность гидравлического удара
- •5.2. Определение ударного давления и скорости распространения ударной волны
- •5.3. Способы гашения и примеры использования гидравлического удара
- •Примеры
- •Контрольные вопросы
- •6. Гидравлический расчет трубопроводов
- •6.1. Классификация трубопроводов
- •6.2. Система уравнений и задачи гидравлического расчета трубопроводов
- •6.3. Метод расчета простых трубопроводов
- •6.4. Методы расчета сложных трубопроводов
- •6.4.1. Методы расчета по удельным гидравлическим сопротивлениям
- •7. Основы теории подобия, моделирования и анализа размерностей
- •7.1. Основные положения
- •7.2. Законы механического подобия
- •7.2.1. Геометрическое подобие
- •7.2.2. Кинематическое подобие
- •7.2.3. Динамическое подобие
- •7.3. Гидродинамические критерии подобия
- •Контрольные вопросы
- •7.4. Физическое моделирование
- •Примеры
- •7.5. Анализ размерностей. -теорема
- •Примеры
- •Для второго -члена имеем
- •Контрольные вопросы
- •8. Основы движения грунтовых вод и двухфазных потоков
- •8.1. Движение грунтовых вод. Основные понятия движения грунтовых вод.
- •8.2. Скорость фильтрации. Формула Дарси
- •8.3. Коэффициент фильтрации и методы его определения
- •8.4. Ламинарная и турбулентная фильтрация
- •8.6. Фильтрация через однородную земляную среду
- •8.7. Особенности гидравлики двухфазных потоков
- •8.7.1. Виды течений двухфазных потоков жидкости и газа
- •Тогда объемный расход смеси равен сумме объемных расходов фаз:
- •В одномерном приближении можно записать:
- •Истинная скорость жидкой фазы равна:
- •Величины иназываются приведенными скоростями фаз.
- •8.7.3. Истинное объемное паросодержание адиабатных двухфазных потоков.
- •8.7.4. Гидравлическое сопротивление двухфазных потоков
3.3. Геометрические характеристики потока
Основными геометрическими характеристиками являются траектория, линия тока и линия отмеченных точек.
Траектория– линия, по которой движется некоторая частицаМ.
Линия тока – кривая, проходящая через такие частицы, скорость которых в данный момент времени направлена по касательной к этой линии (рис. 3.1).
Рис. 3.1
Система линий тока характеризует направление течения потока в данный момент времени (рис. 3.2).
Рис. 3.2
При неустановившемся движении жидкости линии тока изменяют свою форму и расположение, а картина движения изменяется во времени.
При неустановившемся движении линия тока и траектория не совпадают друг с другом (рис. 3.3).
Рис. 3.3
Две различные линии тока во всех случаях не пересекаются между собой. Так, полная скорость в точке А, скоростьu(см. рис. 3.3) направлены по касательной к линииС-Си, следовательно, линияа-ане является линией тока.
Линия отмеченных точек – линия, на которой в данный момент времени лежат частицы жидкости, прошедшие в свое время через одну и ту же начальную точку.
Иллюстрацией такой линии может служить линия расположения поплавков, последовательно выпущенных из одной и той же точки.
3.4. Трубка тока и элементарная струйка
Трубкой тока называется трубчатая поверхность бесконечно малого поперечного сечения, образованная системой линий тока, проходящих через точки бесконечно малого замкнутого контура (рис. 3.4).
Рис. 3.4
Жидкость, протекающая внутри этой трубки, называется элементарной струйкой. Элементарная струйка изолирована от окружающей массы жидкости. Очевидно, жидкость не может протекать через боковую поверхность трубки тока, так как на нейun = 0. Совокупность элементарных струек представляет собой поток конечных размеров. Струйная модель потока жидкости упрощает теоретические исследования движения жидкости.
Основные свойства элементарной струйки:
1. Скорость и площади сечений элементарной струйки могут меняться вдоль струйки, скорости же в пределах одного сечения элементарной струйки вследствие малости площадки одинаковы.
2. Жидкость не может протекать через боковую поверхность элементарной струйки, так как на основании определения линии тока в любой точке поверхности элементарной струйки скорость направлена по касательной к поверхности.
Объем жидкости, проходящей в единицу времени через данное поперечное сечение струйки, называется элементарным расходом.
За время dt(рис. 3.5) все частицы из сечения 1-1
переместятся на расстояние
в сечении 1–1.
Здесьu– скорость
движения частиц. Объем жидкости
между сечениями
.
Рис. 3.5
За единицу времени проходит количество жидкости в объеме, равном:
. (3.1)
Единица измерения м3/с.
Массовый расход
,
кг/с. Весовой расход
,
Н/с.
3.5. Расход и средняя скорость потока
Поток представляет собой совокупность элементарных струек (рис. 3.6).
Рис. 3.6
Из рис. 3.6 видно, что скорость в отдельных струйках различна.
Расход потока Q равен сумме расходов элементарных струек, т.е.
. (3.2)
Скорость движения потока характеризуется средней скоростью в данном поперечном сечении:
(3.3)
или
уравнение расхода
.
(3.4)