
- •Утверждаю Зам.Директора по учебной работе
- •Основы Алгоритмизации и программирования учебно-методическое пособие
- •220301 Автоматизированные системы обработки информации и правления
- •Введение
- •Основные этапы решения задач на эвм
- •Глава 1 способы записи алгоритма
- •1.1 Алгоритм и его свойства
- •Схемы алгоритма
- •1.2 Структуры алгоритмов
- •1.2.1 Алгоритм линейной структуры
- •1.2.2 Алгоритм разветвляющейся структуры
- •1.2.3 Алгоритм циклической структуры
- •1.2.4 Алгоритм со структурой итерационных циклов
- •1.2.5 Алгоритм со структурой вложенных циклов
- •Глава 2 программа на языке высокого уровня
- •2.1 Системы программирования
- •2.2 Характеристика языка программирования Паскаль
- •2.3 Алфавит и структура программы на Паскале Алфавит программы
- •Структура программы
- •Глава 3 Стандартные типы данных
- •3.1 Данные. Типы
- •3.2 Вещественные типы
- •3.3 Целочисленные типы
- •3.4 Символьный тип
- •3.5 Логический тип
- •4 Представление основных структур программирования: итерация, ветвление, повторение
- •4.1 Линейная структура (следование)
- •Var X,y,f: real;
- •4.2 Разветвляющая структура (ветвление)
- •4.3 Циклическая структура (повторение)
- •4.3.1 Оператор цикла с параметром
- •I : Integrer; {номер числа }
- •4.3.2 Оператор цикла с постусловием
- •I,n: integer;
- •4.3.3 Оператор цикла с предусловием
- •4.3.4 Итерационные циклы
- •Var r,a:real;
- •Приближенное вычисление функций
- •Решение уравнений приближенными методами
- •Метод деления отрезка пополам
- •Xsl, Xpr, a, b, e, y1, y2, Lev, Prav, y: Real;
- •Метод Ньютона
- •Метод прохождения отрезка с переменным шагом
- •Вычисление определенных интегралов
- •1. Метод прямоугольников
- •X: Real;
- •2. Метод трапеций
- •X: Real;
- •Глава 5 Типы данных, определяемые пользователем
- •5.1 Пользовательский тип данных
- •5.1.1 Типизированные константы
- •5.1.2 Перечисляемый тип
- •I:1..6; loto: num;
- •5.2 Массивы
- •I : integer;
- •5.2.1. Работа с одномерными массивами
- •I,sum : integer;
- •Var a: array [1..N] of real;
- •Var I,s,r: integer;
- •I : list;
- •I : integer;
- •X : mass;
- •I, j, p, n, m, k:integer;
- •I, j, k, nd : integer;
- •Xmin : real;
- •X : mass;
- •Var I, j, nd : integer;
- •X : mass;
- •5.2.2 Работа с двумерными массивами( матицы)
- •Var I,j,n : integer;
- •I,j,n,m : integer;
- •5.2.3 Сортировка массивов
- •Сортировка методом "пузырька"
- •X : Array [1..Nmax] Of Real;
- •X : Array [1..Nmax] Of Real;
- •Сортировка выбором
- •Обменная сортировка
- •Var m:array[1..1000] of integer;
- •I,z,n:integer; Key:byte;
- •Сортировка слиянием
- •Var { Описание массивов и переменных}
- •X, y: array[1..1000] of integer;
- •5.3 Строковые типы
- •Var s: string[10];
- •5.3.1 Операции над строками
- •5.3.2 Стандартные процедуры и функции для строк
- •Функция Length
- •Функция Upcase
- •Функция Copy
- •Функция Роs
- •I, n, p: integer;
- •I: integer;
- •I: integer;
- •Insert (word2, text, I);
- •Insert (chr (k-32), t, I);
- •Insert (chr (k-80), t, I);
- •Insert (‘е’, t, I);
- •Глава 6 Процедуры и функции
- •6.1 Процедуры
- •I : Integer;
- •I, n: integer;
- •Input _ mas (k, n);
- •I,n : Integer;
- •I,k : Integer;
- •6.2 Функции
- •I:Integer;
- •2) Массивы;
- •I,n : Integer;
- •I : Integer;
- •I,tn,tk:Real;
- •Глава 7 Программирование рекурсивных алгоритмов
- •7.1 Понятие рекурсии
- •7.2 Техника построения рекурсивных алгоритмов
- •7.3 Формы рекурсий
- •If Prim(I) then
- •7.4 Рекурсия и итерация
- •7.5 Программирование с использованием рекурсии
- •Var p: Integer;
- •Var X, y: Integer; begin
- •Var z: Real; begin
- •Var I:integer; j:real;
- •Глава 8 Файлы
- •8.1 Текстовые файлы
- •I,n : Integer; {Вспомогательные переменные}
- •8.2 Типизированные файлы
- •X,m,s : Real;
- •8.3 Нетипизированные файлы
- •Глава 9 Записи
- •9.1 Описание записи
- •I: integer;
- •9.2 Оператор присоединения
- •I, j, k, m : integer;
- •X: real;
- •9.3 Вложенные записи
- •9.4 Записи с вариантами
- •Information: record
- •I, k, n : integer;
- •Vedom : Array [1..Nmax] Of Stud;
- •I,j : Integer;
- •Vedom : File Of Stud;
- •Vedom : File Of Stud;
- •I,j,kdv,k2 : Integer;
- •If Not Eof (Ftel) Then
- •If Not Eof(Ftel) then
- •If Not Eof(FilComp) then
- •Глава 10 Динамические структуры данных
- •10.1 Распределение памяти при выполнении программ
- •Верхняя граница памяти ms-dos
- •10.2 Ссылочные переменные
- •10.3 Процедуры управления кучей
- •10.4 Использование переменных ссылочного типа
- •I: Integer;
- •I, k : Integer;
- •Val(b, k, code);{Превратили второй символ в ч исло}
- •10.5 Списки
- •Var Ch : Char;
- •Var Ch : Char;
- •10.6 Деревья
- •10.7 Константы ссылочного типа
- •Глава 11. Язык Паскаль. Графический модуль Graph Список используемой литературы Основная
- •Дополнительная
7.3 Формы рекурсий
Простая линейная рекурсия
Если в описании подпрограммы рекурсивный вызов в каждой из возможных ветвей различения случаев встречается не более одного раза, то такая рекурсия называется простой или линейной. Рассмотренные ранее рекурсивные функции/процедуры представляли простую рекурсию и содержали одну рекурсивную ветвь с одним рекурсивным вызовом. Рассмотрим простую рекурсивную функцию, содержащую две рекурсивные ветви.
Пример 7.5 Нахождение НОД двух натуральных чисел по алгоритму Евклида. Алгоритм заключается в следующем: если т является точным делителем и, то НОД = т, в противном случае нужно брать функцию НОД от т и от остатка деления п на т.
{Линейная рекурсия } {Алгоритм Евклида}
Function NOD(n, m : byte): byte;
Begin {NOD} if m >n then
NOD := NOD(m,n) {Рекурсивная ветвь }
else
if m = 0 then
NOD := n {Терминальная ветвь }
else
NOD := NOD(m, n mod m) {Рекурсивная ветвь }
End; {NOD}
Первая рекурсивная ветвь в описании функции позволяет писать аргументы в любом порядке. В линейной рекурсии каждый рекурсивный вызов приводит непосредственно к одному дальнейшему рекурсивному вызову. Возникает простая линейная последовательность рекурсивных вызовов.
Параллельная рекурсия
Если в описании подпрограммы по меньшей мере в одной рекурсивной ветви встречаются два или более рекурсивных вызова, то говорят о нелинейной, или параллельной, рекурсии. Один из наиболее ярких примеров такой рекурсии дают числа Фибоначчи:
F(0) = 0, F(1) = 1,F(N) = F(N-1) + F(N-2).
Каждый элемент ряда Фибоначчи является суммой двух предшествующих элементов: 1 1 2 3 5 8 13 21 34 55 ...
Пример 7.6 Вычислить n-й член ряда Фибоначчи.
{Параллельная рекурсия. Числа Фибоначчи}
Function fib(n : integer): integer;
Begin {fib}
If n = 0 then
fib := 0 {Терминальная ветвь }
else
if n = 1 then
fib := 1 {Терминальная ветвь }
else
fib := fib(n-1 )+ fib (n-2){Рекурсивная ветвь }
End; {fib}
Для определения текущего значения F(N) функциями вызывает себя дважды в одной и той же рекурсивной ветви - параллельно. Заметим, что параллельность является лишь текстуальной, но никак не временной: вычисление ветвей в стеке производится последовательно. В отличие от линейной рекурсии, при которой структура рекурсивных вызовов линейна, нелинейная рекурсия ведет к древовидной структуре вызовов. Вызовы лавинообразно ведут к экспоненциальному нарастанию возникающих рекурсивных вызовов - «каскаду вызовов», отсюда еще одно название - каскадная рекурсия.
Взаимная рекурсия
Если процедура или функция вызывает себя сама, это называют прямой рекурсией. Но может встретиться ситуация, когда подпрограмма обращается к себе опосредованно, путем вызова другой подпрограммы, в которой содержится обращение к первой. В этом случае мы имеем дело с косвенной, или взаимной, рекурсией.
Пример 7.7 Программа выдает простые числа от 1 до и, для чего используются функции next и prim, которые вызываются перекрестно.
{Взаимная рекурсия. Простые числа}
Program Primzahlen;
Var
n, i: integer; {Опережающее описание}
Function Next (i: integer): integer;
forward; {Prim определяет: j - простое число или нет}
Function Prim(j : integer): Boolean;
Var
к: integer; Begin {Prim}
k:=2;
while (k*k <= j) and (j mod к <> 0) do
к := Next(k);{Prim вызывает Next}
if j mod к = 0 then
Prim := false
else
Prim := true;
end{Prim};
{Next вычисляет, каково следующее за j простое число. Параметры функции уже стоят в ссылке вперед}
Function Next, Var
k: integer;
Begin {Next}
k := i+l;
while not(Prim(k)) do
k := k+1; {Next вызывает, в свою очередь, Prim}
next := k;
End {Next};
Begin {Primzahlen}
Writeln('Введите положительное число п,');
ReadLn(n);
Writeln('Предшествующие ему простые числа');
for i := 2 to n do