
- •Утверждаю Зам.Директора по учебной работе
- •Основы Алгоритмизации и программирования учебно-методическое пособие
- •220301 Автоматизированные системы обработки информации и правления
- •Введение
- •Основные этапы решения задач на эвм
- •Глава 1 способы записи алгоритма
- •1.1 Алгоритм и его свойства
- •Схемы алгоритма
- •1.2 Структуры алгоритмов
- •1.2.1 Алгоритм линейной структуры
- •1.2.2 Алгоритм разветвляющейся структуры
- •1.2.3 Алгоритм циклической структуры
- •1.2.4 Алгоритм со структурой итерационных циклов
- •1.2.5 Алгоритм со структурой вложенных циклов
- •Глава 2 программа на языке высокого уровня
- •2.1 Системы программирования
- •2.2 Характеристика языка программирования Паскаль
- •2.3 Алфавит и структура программы на Паскале Алфавит программы
- •Структура программы
- •Глава 3 Стандартные типы данных
- •3.1 Данные. Типы
- •3.2 Вещественные типы
- •3.3 Целочисленные типы
- •3.4 Символьный тип
- •3.5 Логический тип
- •4 Представление основных структур программирования: итерация, ветвление, повторение
- •4.1 Линейная структура (следование)
- •Var X,y,f: real;
- •4.2 Разветвляющая структура (ветвление)
- •4.3 Циклическая структура (повторение)
- •4.3.1 Оператор цикла с параметром
- •I : Integrer; {номер числа }
- •4.3.2 Оператор цикла с постусловием
- •I,n: integer;
- •4.3.3 Оператор цикла с предусловием
- •4.3.4 Итерационные циклы
- •Var r,a:real;
- •Приближенное вычисление функций
- •Решение уравнений приближенными методами
- •Метод деления отрезка пополам
- •Xsl, Xpr, a, b, e, y1, y2, Lev, Prav, y: Real;
- •Метод Ньютона
- •Метод прохождения отрезка с переменным шагом
- •Вычисление определенных интегралов
- •1. Метод прямоугольников
- •X: Real;
- •2. Метод трапеций
- •X: Real;
- •Глава 5 Типы данных, определяемые пользователем
- •5.1 Пользовательский тип данных
- •5.1.1 Типизированные константы
- •5.1.2 Перечисляемый тип
- •I:1..6; loto: num;
- •5.2 Массивы
- •I : integer;
- •5.2.1. Работа с одномерными массивами
- •I,sum : integer;
- •Var a: array [1..N] of real;
- •Var I,s,r: integer;
- •I : list;
- •I : integer;
- •X : mass;
- •I, j, p, n, m, k:integer;
- •I, j, k, nd : integer;
- •Xmin : real;
- •X : mass;
- •Var I, j, nd : integer;
- •X : mass;
- •5.2.2 Работа с двумерными массивами( матицы)
- •Var I,j,n : integer;
- •I,j,n,m : integer;
- •5.2.3 Сортировка массивов
- •Сортировка методом "пузырька"
- •X : Array [1..Nmax] Of Real;
- •X : Array [1..Nmax] Of Real;
- •Сортировка выбором
- •Обменная сортировка
- •Var m:array[1..1000] of integer;
- •I,z,n:integer; Key:byte;
- •Сортировка слиянием
- •Var { Описание массивов и переменных}
- •X, y: array[1..1000] of integer;
- •5.3 Строковые типы
- •Var s: string[10];
- •5.3.1 Операции над строками
- •5.3.2 Стандартные процедуры и функции для строк
- •Функция Length
- •Функция Upcase
- •Функция Copy
- •Функция Роs
- •I, n, p: integer;
- •I: integer;
- •I: integer;
- •Insert (word2, text, I);
- •Insert (chr (k-32), t, I);
- •Insert (chr (k-80), t, I);
- •Insert (‘е’, t, I);
- •Глава 6 Процедуры и функции
- •6.1 Процедуры
- •I : Integer;
- •I, n: integer;
- •Input _ mas (k, n);
- •I,n : Integer;
- •I,k : Integer;
- •6.2 Функции
- •I:Integer;
- •2) Массивы;
- •I,n : Integer;
- •I : Integer;
- •I,tn,tk:Real;
- •Глава 7 Программирование рекурсивных алгоритмов
- •7.1 Понятие рекурсии
- •7.2 Техника построения рекурсивных алгоритмов
- •7.3 Формы рекурсий
- •If Prim(I) then
- •7.4 Рекурсия и итерация
- •7.5 Программирование с использованием рекурсии
- •Var p: Integer;
- •Var X, y: Integer; begin
- •Var z: Real; begin
- •Var I:integer; j:real;
- •Глава 8 Файлы
- •8.1 Текстовые файлы
- •I,n : Integer; {Вспомогательные переменные}
- •8.2 Типизированные файлы
- •X,m,s : Real;
- •8.3 Нетипизированные файлы
- •Глава 9 Записи
- •9.1 Описание записи
- •I: integer;
- •9.2 Оператор присоединения
- •I, j, k, m : integer;
- •X: real;
- •9.3 Вложенные записи
- •9.4 Записи с вариантами
- •Information: record
- •I, k, n : integer;
- •Vedom : Array [1..Nmax] Of Stud;
- •I,j : Integer;
- •Vedom : File Of Stud;
- •Vedom : File Of Stud;
- •I,j,kdv,k2 : Integer;
- •If Not Eof (Ftel) Then
- •If Not Eof(Ftel) then
- •If Not Eof(FilComp) then
- •Глава 10 Динамические структуры данных
- •10.1 Распределение памяти при выполнении программ
- •Верхняя граница памяти ms-dos
- •10.2 Ссылочные переменные
- •10.3 Процедуры управления кучей
- •10.4 Использование переменных ссылочного типа
- •I: Integer;
- •I, k : Integer;
- •Val(b, k, code);{Превратили второй символ в ч исло}
- •10.5 Списки
- •Var Ch : Char;
- •Var Ch : Char;
- •10.6 Деревья
- •10.7 Константы ссылочного типа
- •Глава 11. Язык Паскаль. Графический модуль Graph Список используемой литературы Основная
- •Дополнительная
X : Array [1..Nmax] Of Real;
A : Real;
n, k, i : Integer;
Begin
Writeln('Введите количество чисел');
Readln(n);
Writeln('Введите массив чисел');
For i := 1 To n Do
Read (X[i]);
For k := 1 To n-1 Do{ Сортировка }
For i := 1 To n-1 Do
If X[i] > X[i+1] Then
Begin
A:=X[i];
X[i]:=X[i+1];
X[i+1]:=A
End;
Writeln('Отсортированный массив чисел:');
For i:=1 To n Do
Write (X[i]);
End.
Глубину просмотра можно уменьшать, основываясь на том, что большие числа "опускаются" вниз (в конец последовательности) и затем не переставляются:
For k := 1 To n-1 Do
For i := 1 To n-k Do
If X[i] > X[i+1] Then
. . . . . . . .
Сокращение количества просмотров улучшает временные характеристики метода. Из алгоритма можно понять, что если на одном из просмотров не было перестановок, то их не будет и потом – данные уже отсортированы, процесс сортировки следует закончить. Такой подход дает значительную экономию времени при работе с большими "почти отсортироваными" массивами. Примером такого массива может быть упорядоченный по алфавиту список сотрудников фирмы, на которую время от времени принимают новых работников.
Приведем алгоритм для этого метода.
В этом алгоритме используется переменная "Перестановка_есть", которой сначала присваивается значение "истина", а как только в одном из просмотров не будет перестановок – ей присвоится значение "ложь". Это позволит прервать выполнение цикла "Пока".
Program SortUsk;
Const
Nmax = 100;
Var
X : Array [1..Nmax] Of Real;
A : Real;
P : Boolean;
L, K, I, N : Integer;
Begin
Writeln('Введите количество чисел');
Readln(n);
Writeln('Введите массив чисел');
For i := 1 To n Do
Read(X[i]);
P := True; {Перестановка есть}
K := 1; {Номер просмотра}
While P Do
Begin
L:=0; {Кол. перестановок}
For i := 1 To n-k Do
If X[i] > X[i+1] Then
Begin
A := X[i];
X[i]:=X[i+1];
X[i+1]:=A;
L:=L+1
End;
If L=0 Then
P:=False;
k:=k+1;
End;
Writeln('Отсортированный массив чисел');
For i := 1 To n Do
Write(X[i]);
End.
Сортировка выбором
Пусть дан одномерный неупорядоченный массив, содержащий целые числа М={mi}, i=1,n; n - число элементов. Необходимо упорядочить элементы этого массива по возрастанию их значений.
На первом шаге из элементов массива выбирается минимальный, и он меняется местами с элементом, стоящем на первом месте. На втором шаге из оставшихся неупорядоченных элементов, начиная со второго, выбирается следующий минимальный элемент, и он меняется местами с элементом, стоящем на втором месте. Процесс повторяется до тех пор, пока не будут переставлены все элементы. Последний элемент можно не проверять, так как к этому времени все элементы уже будут стоять на своих местах.
В том случае, если требуется упорядочить элементы по убыванию их значений, осуществляется поиск и обмен максимального элемента.
Пример 5.16 Программа сортировки выбором
Uses crt;
Var
M:array[1..1000] of integer;
n, i, j, Min, i_min:integer;
Begin
Clrscr;
Write(' Введите длину массива n = ');
Readln(n);
{ Вместо ввода с клавиатуры заполним массив случайными числами из диапазона от 0 до 500}
For i:=1 to n do M[i]:=Random(500);
For i:=1 to n-1 do
Begin
{принимаем за минимум i-й элемент}
Min:=M[i]; i_min:=i;
For j:=i+1 to n do
If M[j]<Min then
Begin
{найдено меньшее число - запоминаем его и его адрес}
Min:=M[j]; i_min:=j;
End;
{Обмен}
M[i_min]:=M[i];
M[i]:=Min;
End;
Writeln(' Упорядоченный массив');
For i:=1 to n do write(M[i],' ');
readkey;
End.