
- •Утверждаю Зам.Директора по учебной работе
- •Основы Алгоритмизации и программирования учебно-методическое пособие
- •220301 Автоматизированные системы обработки информации и правления
- •Введение
- •Основные этапы решения задач на эвм
- •Глава 1 способы записи алгоритма
- •1.1 Алгоритм и его свойства
- •Схемы алгоритма
- •1.2 Структуры алгоритмов
- •1.2.1 Алгоритм линейной структуры
- •1.2.2 Алгоритм разветвляющейся структуры
- •1.2.3 Алгоритм циклической структуры
- •1.2.4 Алгоритм со структурой итерационных циклов
- •1.2.5 Алгоритм со структурой вложенных циклов
- •Глава 2 программа на языке высокого уровня
- •2.1 Системы программирования
- •2.2 Характеристика языка программирования Паскаль
- •2.3 Алфавит и структура программы на Паскале Алфавит программы
- •Структура программы
- •Глава 3 Стандартные типы данных
- •3.1 Данные. Типы
- •3.2 Вещественные типы
- •3.3 Целочисленные типы
- •3.4 Символьный тип
- •3.5 Логический тип
- •4 Представление основных структур программирования: итерация, ветвление, повторение
- •4.1 Линейная структура (следование)
- •Var X,y,f: real;
- •4.2 Разветвляющая структура (ветвление)
- •4.3 Циклическая структура (повторение)
- •4.3.1 Оператор цикла с параметром
- •I : Integrer; {номер числа }
- •4.3.2 Оператор цикла с постусловием
- •I,n: integer;
- •4.3.3 Оператор цикла с предусловием
- •4.3.4 Итерационные циклы
- •Var r,a:real;
- •Приближенное вычисление функций
- •Решение уравнений приближенными методами
- •Метод деления отрезка пополам
- •Xsl, Xpr, a, b, e, y1, y2, Lev, Prav, y: Real;
- •Метод Ньютона
- •Метод прохождения отрезка с переменным шагом
- •Вычисление определенных интегралов
- •1. Метод прямоугольников
- •X: Real;
- •2. Метод трапеций
- •X: Real;
- •Глава 5 Типы данных, определяемые пользователем
- •5.1 Пользовательский тип данных
- •5.1.1 Типизированные константы
- •5.1.2 Перечисляемый тип
- •I:1..6; loto: num;
- •5.2 Массивы
- •I : integer;
- •5.2.1. Работа с одномерными массивами
- •I,sum : integer;
- •Var a: array [1..N] of real;
- •Var I,s,r: integer;
- •I : list;
- •I : integer;
- •X : mass;
- •I, j, p, n, m, k:integer;
- •I, j, k, nd : integer;
- •Xmin : real;
- •X : mass;
- •Var I, j, nd : integer;
- •X : mass;
- •5.2.2 Работа с двумерными массивами( матицы)
- •Var I,j,n : integer;
- •I,j,n,m : integer;
- •5.2.3 Сортировка массивов
- •Сортировка методом "пузырька"
- •X : Array [1..Nmax] Of Real;
- •X : Array [1..Nmax] Of Real;
- •Сортировка выбором
- •Обменная сортировка
- •Var m:array[1..1000] of integer;
- •I,z,n:integer; Key:byte;
- •Сортировка слиянием
- •Var { Описание массивов и переменных}
- •X, y: array[1..1000] of integer;
- •5.3 Строковые типы
- •Var s: string[10];
- •5.3.1 Операции над строками
- •5.3.2 Стандартные процедуры и функции для строк
- •Функция Length
- •Функция Upcase
- •Функция Copy
- •Функция Роs
- •I, n, p: integer;
- •I: integer;
- •I: integer;
- •Insert (word2, text, I);
- •Insert (chr (k-32), t, I);
- •Insert (chr (k-80), t, I);
- •Insert (‘е’, t, I);
- •Глава 6 Процедуры и функции
- •6.1 Процедуры
- •I : Integer;
- •I, n: integer;
- •Input _ mas (k, n);
- •I,n : Integer;
- •I,k : Integer;
- •6.2 Функции
- •I:Integer;
- •2) Массивы;
- •I,n : Integer;
- •I : Integer;
- •I,tn,tk:Real;
- •Глава 7 Программирование рекурсивных алгоритмов
- •7.1 Понятие рекурсии
- •7.2 Техника построения рекурсивных алгоритмов
- •7.3 Формы рекурсий
- •If Prim(I) then
- •7.4 Рекурсия и итерация
- •7.5 Программирование с использованием рекурсии
- •Var p: Integer;
- •Var X, y: Integer; begin
- •Var z: Real; begin
- •Var I:integer; j:real;
- •Глава 8 Файлы
- •8.1 Текстовые файлы
- •I,n : Integer; {Вспомогательные переменные}
- •8.2 Типизированные файлы
- •X,m,s : Real;
- •8.3 Нетипизированные файлы
- •Глава 9 Записи
- •9.1 Описание записи
- •I: integer;
- •9.2 Оператор присоединения
- •I, j, k, m : integer;
- •X: real;
- •9.3 Вложенные записи
- •9.4 Записи с вариантами
- •Information: record
- •I, k, n : integer;
- •Vedom : Array [1..Nmax] Of Stud;
- •I,j : Integer;
- •Vedom : File Of Stud;
- •Vedom : File Of Stud;
- •I,j,kdv,k2 : Integer;
- •If Not Eof (Ftel) Then
- •If Not Eof(Ftel) then
- •If Not Eof(FilComp) then
- •Глава 10 Динамические структуры данных
- •10.1 Распределение памяти при выполнении программ
- •Верхняя граница памяти ms-dos
- •10.2 Ссылочные переменные
- •10.3 Процедуры управления кучей
- •10.4 Использование переменных ссылочного типа
- •I: Integer;
- •I, k : Integer;
- •Val(b, k, code);{Превратили второй символ в ч исло}
- •10.5 Списки
- •Var Ch : Char;
- •Var Ch : Char;
- •10.6 Деревья
- •10.7 Константы ссылочного типа
- •Глава 11. Язык Паскаль. Графический модуль Graph Список используемой литературы Основная
- •Дополнительная
Метод прохождения отрезка с переменным шагом
В отличие от двух предыдущих этот метод позволяет найти не один, а несколько корней, если таковые имеются на выбранном интервале. Он предоставляет возможность локализовать каждый из искомых корней (определить все отрезки [a,b]). Сами корни находят одним из первых двух методов.
Пример 4.15 Суть метода заключается в следующем.
Выбирается интервал [А, В] значений аргумента Х, на котором ищутся корни.
Определяется начальное значение шага Н = (В - А)/ n, где n — начальное количество точек на интервале.
Проходят интервал [А, В] с шагом Н, вычисляя значения функции f(x) и f(x+H).
Если вычисленная пара значений функции имеет разные знаки, корень локализован. Его можно определить, например методом Ньютона. После нахождения корня отступают от него на величину шага Н.
Уменьшают шаг, например: Н:= Н / 2
Пункты 3 — 5 выполняют до тех пор, пока не будут найдены все корни.
Program Roots;
Const
n= 20; { начальное количество точек на интервале }
Var
A, B, X, y1, y2, lev, Prav, E : Real;
Predpol, Naideno: Integer; { количества корней }
Function f(x: Real): Real;
Begin
f:= { здесь должна быть формула для вычисления функции}
End;
Function Prf(x: Real): Real;
Begin
Prf:= { здесь будет формула для вычисления производной}
End;
Procedure Newton(Lev,E: Real; Var x:Real);
{ нахождение корня методом Ньютона }
{ Lev - левая граница, x - корень }
Var
Y, xn: Real;
Begin
x := Lev;
{ вычисление корня }
Repeat
xn := x-f(x)/Prf(x);
y := Abs(xn-x);
x := xn;
Until y <= E;
X:= xn;
End;
Begin
Writeln('Введите интервал нахождения корней и погрешность');
Readln(A, B, E);
Writeln('Введите предполагаемое количество корней');
Readln(Predpol);
{ Начальный шаг }
H:=(B-A)/2;
{ Поиск корней }
Repeat
Naideno:=0; { найдено корней }
X:=A;
While x < B do
Begin
Y1:= f(x);
Y2:= f(x+H);
If ((y1>=0) And (y2<0))Or((y1<0) And (y2>=0)) then
Begin
{ корень локализован }
Lev:= x;
Newton(Lev, E, x);
Y1:= f(x);
Writeln('Корень = ', Xsl:8:4);
Writeln('Функция = ', y2:10:7);
End;
X:= x + H;
End;
H:= H / 2;
Until (Predpol = Naideno) Or (H <= E);
If Predpol <> Naideno Then
Writeln('Количество корней задано неверно');
Writeln('Работа окончена');
Readln;
End.
Вычисление определенных интегралов
Известно, что определенный интеграл некоторой функции на f(x) интервале [a,b] равен площади фигуры, ограниченной кривой f(x), осью х и вертикальными линиями, проходящими через границы интервала. Вычисление такого интеграла приближенными методами предполагает замену указанной фигуры более простыми, площади которых можно найти по формулам, применяемым в элементарной геометрии. Очевидно, что чем меньше размеры элементарных фигур — тем точнее результат. Если разность между двумя последовательными приближениями окажется меньше заданной погрешности Е, то последнее значение можно считать результатом.
Общий алгоритм вычисления определенного интеграла можно представить следующим образом.
Ввести a, b и Е.
Вычислить начальное значение площади (приближение).
Повторять
Вычислить очередное приближение
Пока абсолютная величина разности между соседними приближениями не будет меньше или равна Е.
Закончить.
В качестве элементарных фигур, которыми заменяется исходная, наиболее часто используют прямоугольники или трапеции. Соответственно методы приближенного вычисления определенного интеграла называют:
Метод прямоугольников и
Метод трапеций.