 
        
        - •Утверждаю Зам.Директора по учебной работе
- •Основы Алгоритмизации и программирования учебно-методическое пособие
- •220301 Автоматизированные системы обработки информации и правления
- •Введение
- •Основные этапы решения задач на эвм
- •Глава 1 способы записи алгоритма
- •1.1 Алгоритм и его свойства
- •Схемы алгоритма
- •1.2 Структуры алгоритмов
- •1.2.1 Алгоритм линейной структуры
- •1.2.2 Алгоритм разветвляющейся структуры
- •1.2.3 Алгоритм циклической структуры
- •1.2.4 Алгоритм со структурой итерационных циклов
- •1.2.5 Алгоритм со структурой вложенных циклов
- •Глава 2 программа на языке высокого уровня
- •2.1 Системы программирования
- •2.2 Характеристика языка программирования Паскаль
- •2.3 Алфавит и структура программы на Паскале Алфавит программы
- •Структура программы
- •Глава 3 Стандартные типы данных
- •3.1 Данные. Типы
- •3.2 Вещественные типы
- •3.3 Целочисленные типы
- •3.4 Символьный тип
- •3.5 Логический тип
- •4 Представление основных структур программирования: итерация, ветвление, повторение
- •4.1 Линейная структура (следование)
- •Var X,y,f: real;
- •4.2 Разветвляющая структура (ветвление)
- •4.3 Циклическая структура (повторение)
- •4.3.1 Оператор цикла с параметром
- •I : Integrer; {номер числа }
- •4.3.2 Оператор цикла с постусловием
- •I,n: integer;
- •4.3.3 Оператор цикла с предусловием
- •4.3.4 Итерационные циклы
- •Var r,a:real;
- •Приближенное вычисление функций
- •Решение уравнений приближенными методами
- •Метод деления отрезка пополам
- •Xsl, Xpr, a, b, e, y1, y2, Lev, Prav, y: Real;
- •Метод Ньютона
- •Метод прохождения отрезка с переменным шагом
- •Вычисление определенных интегралов
- •1. Метод прямоугольников
- •X: Real;
- •2. Метод трапеций
- •X: Real;
- •Глава 5 Типы данных, определяемые пользователем
- •5.1 Пользовательский тип данных
- •5.1.1 Типизированные константы
- •5.1.2 Перечисляемый тип
- •I:1..6; loto: num;
- •5.2 Массивы
- •I : integer;
- •5.2.1. Работа с одномерными массивами
- •I,sum : integer;
- •Var a: array [1..N] of real;
- •Var I,s,r: integer;
- •I : list;
- •I : integer;
- •X : mass;
- •I, j, p, n, m, k:integer;
- •I, j, k, nd : integer;
- •Xmin : real;
- •X : mass;
- •Var I, j, nd : integer;
- •X : mass;
- •5.2.2 Работа с двумерными массивами( матицы)
- •Var I,j,n : integer;
- •I,j,n,m : integer;
- •5.2.3 Сортировка массивов
- •Сортировка методом "пузырька"
- •X : Array [1..Nmax] Of Real;
- •X : Array [1..Nmax] Of Real;
- •Сортировка выбором
- •Обменная сортировка
- •Var m:array[1..1000] of integer;
- •I,z,n:integer; Key:byte;
- •Сортировка слиянием
- •Var { Описание массивов и переменных}
- •X, y: array[1..1000] of integer;
- •5.3 Строковые типы
- •Var s: string[10];
- •5.3.1 Операции над строками
- •5.3.2 Стандартные процедуры и функции для строк
- •Функция Length
- •Функция Upcase
- •Функция Copy
- •Функция Роs
- •I, n, p: integer;
- •I: integer;
- •I: integer;
- •Insert (word2, text, I);
- •Insert (chr (k-32), t, I);
- •Insert (chr (k-80), t, I);
- •Insert (‘е’, t, I);
- •Глава 6 Процедуры и функции
- •6.1 Процедуры
- •I : Integer;
- •I, n: integer;
- •Input _ mas (k, n);
- •I,n : Integer;
- •I,k : Integer;
- •6.2 Функции
- •I:Integer;
- •2) Массивы;
- •I,n : Integer;
- •I : Integer;
- •I,tn,tk:Real;
- •Глава 7 Программирование рекурсивных алгоритмов
- •7.1 Понятие рекурсии
- •7.2 Техника построения рекурсивных алгоритмов
- •7.3 Формы рекурсий
- •If Prim(I) then
- •7.4 Рекурсия и итерация
- •7.5 Программирование с использованием рекурсии
- •Var p: Integer;
- •Var X, y: Integer; begin
- •Var z: Real; begin
- •Var I:integer; j:real;
- •Глава 8 Файлы
- •8.1 Текстовые файлы
- •I,n : Integer; {Вспомогательные переменные}
- •8.2 Типизированные файлы
- •X,m,s : Real;
- •8.3 Нетипизированные файлы
- •Глава 9 Записи
- •9.1 Описание записи
- •I: integer;
- •9.2 Оператор присоединения
- •I, j, k, m : integer;
- •X: real;
- •9.3 Вложенные записи
- •9.4 Записи с вариантами
- •Information: record
- •I, k, n : integer;
- •Vedom : Array [1..Nmax] Of Stud;
- •I,j : Integer;
- •Vedom : File Of Stud;
- •Vedom : File Of Stud;
- •I,j,kdv,k2 : Integer;
- •If Not Eof (Ftel) Then
- •If Not Eof(Ftel) then
- •If Not Eof(FilComp) then
- •Глава 10 Динамические структуры данных
- •10.1 Распределение памяти при выполнении программ
- •Верхняя граница памяти ms-dos
- •10.2 Ссылочные переменные
- •10.3 Процедуры управления кучей
- •10.4 Использование переменных ссылочного типа
- •I: Integer;
- •I, k : Integer;
- •Val(b, k, code);{Превратили второй символ в ч исло}
- •10.5 Списки
- •Var Ch : Char;
- •Var Ch : Char;
- •10.6 Деревья
- •10.7 Константы ссылочного типа
- •Глава 11. Язык Паскаль. Графический модуль Graph Список используемой литературы Основная
- •Дополнительная
Метод прохождения отрезка с переменным шагом
В отличие от двух предыдущих этот метод позволяет найти не один, а несколько корней, если таковые имеются на выбранном интервале. Он предоставляет возможность локализовать каждый из искомых корней (определить все отрезки [a,b]). Сами корни находят одним из первых двух методов.
Пример 4.15 Суть метода заключается в следующем.
- Выбирается интервал [А, В] значений аргумента Х, на котором ищутся корни. 
- Определяется начальное значение шага Н = (В - А)/ n, где n — начальное количество точек на интервале. 
- Проходят интервал [А, В] с шагом Н, вычисляя значения функции f(x) и f(x+H). 
- Если вычисленная пара значений функции имеет разные знаки, корень локализован. Его можно определить, например методом Ньютона. После нахождения корня отступают от него на величину шага Н. 
- Уменьшают шаг, например: Н:= Н / 2 
- Пункты 3 — 5 выполняют до тех пор, пока не будут найдены все корни. 
Program Roots;
Const
n= 20; { начальное количество точек на интервале }
Var
A, B, X, y1, y2, lev, Prav, E : Real;
Predpol, Naideno: Integer; { количества корней }
Function f(x: Real): Real;
Begin
f:= { здесь должна быть формула для вычисления функции}
End;
Function Prf(x: Real): Real;
Begin
Prf:= { здесь будет формула для вычисления производной}
End;
Procedure Newton(Lev,E: Real; Var x:Real);
{ нахождение корня методом Ньютона }
{ Lev - левая граница, x - корень }
Var
Y, xn: Real;
Begin
x := Lev;
{ вычисление корня }
Repeat
xn := x-f(x)/Prf(x);
y := Abs(xn-x);
x := xn;
Until y <= E;
X:= xn;
End;
Begin
Writeln('Введите интервал нахождения корней и погрешность');
Readln(A, B, E);
Writeln('Введите предполагаемое количество корней');
Readln(Predpol);
{ Начальный шаг }
H:=(B-A)/2;
{ Поиск корней }
Repeat
Naideno:=0; { найдено корней }
X:=A;
While x < B do
Begin
Y1:= f(x);
Y2:= f(x+H);
If ((y1>=0) And (y2<0))Or((y1<0) And (y2>=0)) then
Begin
{ корень локализован }
Lev:= x;
Newton(Lev, E, x);
Y1:= f(x);
Writeln('Корень = ', Xsl:8:4);
Writeln('Функция = ', y2:10:7);
End;
X:= x + H;
End;
H:= H / 2;
Until (Predpol = Naideno) Or (H <= E);
If Predpol <> Naideno Then
Writeln('Количество корней задано неверно');
Writeln('Работа окончена');
Readln;
End.
Вычисление определенных интегралов
Известно, что определенный интеграл некоторой функции на f(x) интервале [a,b] равен площади фигуры, ограниченной кривой f(x), осью х и вертикальными линиями, проходящими через границы интервала. Вычисление такого интеграла приближенными методами предполагает замену указанной фигуры более простыми, площади которых можно найти по формулам, применяемым в элементарной геометрии. Очевидно, что чем меньше размеры элементарных фигур — тем точнее результат. Если разность между двумя последовательными приближениями окажется меньше заданной погрешности Е, то последнее значение можно считать результатом.
Общий алгоритм вычисления определенного интеграла можно представить следующим образом.
- Ввести a, b и Е. 
- Вычислить начальное значение площади (приближение). 
- Повторять 
Вычислить очередное приближение
Пока абсолютная величина разности между соседними приближениями не будет меньше или равна Е.
- Закончить. 
В качестве элементарных фигур, которыми заменяется исходная, наиболее часто используют прямоугольники или трапеции. Соответственно методы приближенного вычисления определенного интеграла называют:
- Метод прямоугольников и 
- Метод трапеций. 
