Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Иваницкий.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
475.14 Кб
Скачать

Научные исследования

В последние годы интерес к проблеме газовых гидратов во всем мире значительно усилился. Рост активности исследований объясняется следующими основными факторами:

 активизацией поисков альтернативных источников углеводородного сырья в странах, не обладающих ресурсами энергоносителей, так как газовые гидраты являются нетрадиционным источником углеводородного сырья, опытно-промышленное освоение, которого может начаться в ближайшие годы;

 необходимостью оценки роли газовых гидратов в приповерхностных слоях геосферы, особенно в связи с их возможным влиянием на глобальные климатические изменения;

 изучением закономерностей образования и разложения газовых гидратов в земной коре в общетеоретическом плане с целью обоснования поисков и разведки традиционных месторождений углеводородов (природные гидратопроявления могут служить маркерами более глубокозалегающих обычных месторождений нефти и газа);

 активным освоением месторождений углеводородов, расположенных в сложных природных условиях (глубоководный шельф, полярные регионы), где проблема техногенных газогидратов обостряется;

 целесообразностью сокращения эксплуатационных затрат на предупреждение гидратообразования в промысловых системах добычи газа за счёт перехода на энерго-ресурсосберегающие и экологически чистые технологии;

 возможностью использования газогидратных технологий при разработке, хранении и транспорте природного газа.

В последние годы (после проведения в 2003 году совещания в ОАО «Газпром») исследования гидратов в России продолжались в различных организациях как посредством госбюджетного финансирования (два интеграционных проекта Сибирского отделения РАН, небольшие гранты РФФИ, грант губернатора Тюмени, грант министерства высшего образования РФ), так и за счёт грантов международных фондов — ИНТАС, СРДФ, ЮНЕСКО (по программе «плавучий университет» — морские экспедиции под эгидой ЮНЕСКО под лозунгом Training Through Research — обучение через исследования), КОМЕКС (Kurele-Okhosk-Marine Experiment), ЧАОС (Carbon-Hydrate Accumulations in the Okhotsk Sea) и др.

В 2002—2004 гг. исследования по нетрадиционным источникам углеводородов, включая газовые гидраты (с учетом коммерческих интересов ОАО «Газпром»), продолжались в ООО «Газпром ВНИИГАЗ» и ОАО «Промгаз» при небольшом масштабе финансирования. В настоящее время исследования по газовым гидратам проводятся в ОАО «Газпром» (главным образом, в ООО «Газпром ВНИИГАЗ»), в институтах Российской академии наук, в университетах.

Исследования геологических и технологических проблем газовых гидратов были начаты в середине 60-х годов специалистами ВНИИГАЗа. Вначале ставились и решались технологические вопросы предупреждения гидратообразования, затем тематика постепенно расширялась: включались в сферу интересов кинетические аспекты гидратообразования, далее значительное внимание было уделено геологическим аспектам, в частности возможностям существования газогидратных залежей, теоретическим проблемам их освоения.

Газогидратные месторождения Российской Федерации и зарубежных стран

В настоящий момент известно более двухсот месторождений газовых гидратов, большая часть которых расположена на морском дне. Запасы газогидратов геологи оценивают, соотнося их с суммарным объёмом разведанных на сегодняшний день месторождений нефти, природного газа и угля. Их вывод таков: залежи метана на дне морей и океанов обладают вдвое большими энергоресурсами, чем все прочие ископаемые энергоносители вместе взятые

Самое первое упоминание о больших скоплениях газовых гидратов связано с Мессояхским месторождением, открытым в 1972 г. в Западной Сибири. Вопросами анализа разработки этого месторождения занимались многие исследователи, опубликовано более ста научных статей. Согласно работе [2] в верхней части продуктивного разреза Мессояхского месторождения предполагается существование природных гидратов. Однако следует отметить, что прямые исследования гидратоносности месторождения (отбор керна) не проводились, а те признаки, по которым выявлены гидраты, носят косвенный характер и допускают различную трактовку [3].

Поэтому к настоящему моменту нет единого мнения о гидратоносности Мессояхского месторождения.

Наиболее показательным является пример другого предполагаемого гидратоносного района - северного склона Аляски (США). Долгое время считалось, что данный район имеет значительные запасы газа в гидратном состоянии. Так, утверждалось, что в районе нефтяных месторождений Прудо Бей и Кипарук Ривер имеется шесть гидратонасыщенных пластов с запасами 1,0-1,2 трлн м3. Предположение о гидратоносности строилось на результатах опробования скважин в вероятном интервале залегания гидратов (эти интервалы характеризовались крайне низкими дебитами газа) и интерпретации геофизических материалов.

С целью изучения условий залегания гидратов на Аляске и оценки их ресурсов в конце 2002 г. компания «Анадарко» (Anadarko) совместно с Департаментом энергетики США организовала бурение разведочной скважины Хот Айс № 1 (HOT ICE #1). В начале 2004 г. скважина была закончена на проектной глубине 792 м. Тем не менее, несмотря на ряд косвенных признаков наличия гидратов (данные геофизических исследований и сейсморазведки), а также на благоприятные термобарические условия, гидратов в поднятых кернах обнаружено не было [5]. Это еще раз подтверждает тезис о том, что единственным надежным способом обнаружения гидратных залежей является разведочное бурение с отбором керна.

На данный момент подтверждена гидратоносность лишь двух месторождений природных гидратов, представляющих наибольший интерес с точки зрения промышленного освоения: Маллик - в дельте реки Макензи на северо-западе Канады, и Нанкай - на шельфе Японии. К промышленной разработке месторождения Нанкай намечается приступить в 2016 г.

Основные направления поиска газовых гидратов в России сейчас сосредоточены в Охотском море и на озере Байкал. Наибольший интерес учёных вызывают холодные моря Крайнего Севера и Крайнего Юга.

Месторождение Маллик. Существование природных гидратов подтверждено бурением исследовательской скважины в 1998 г. и трех скважин в 2002 г. На этом месторождении успешно проведены промысловые эксперименты по добыче газа из гидратонасыщенных интервалов. Есть все основания полагать, что оно является характерным типом континентальных гидратных месторождений, которые будут открыты в дальнейшем.

На основе геофизических исследований и изучении кернового материала выявлены три гидратосодержащих пласта (A, B, C) общей мощностью 130 м в интервале 890-1108 м. Зона вечной мерзлоты имеет мощность порядка 610 м, а зона стабильности гидрата (ЗСГ) (т.е. интервал, где термобарические условия соответствуют условиям стабильности гидратов) простирается от 225 до 1100 м. Зона стабильности гидратов определяется по точкам пересечения равновесной кривой образования гидрата пластового газа и кривой изменения температуры разреза (см. рис. 1). Верхняя точка пересечения является верхней границей ЗСГ, а нижняя точка — соответственно нижней границей ЗСГ. Равновесная температура, соответствующая нижней границе зоны стабильности гидратов, составляет 12,2°С [6].

Рис.1 Термобарический разрез месторождения Маллик

Пласт А находится в интервале от 892 до 930 м, где отдельно выделяется гидратонасыщенный пропласток песчаника (907-930 м). По данным геофизики, насыщенность гидратом варьирует от 50 до 85%, остальное поровое пространство занято водой. Пористость составляет 32-38%. Верхняя часть пласта А состоит из песчаного алеврита и тонких прослоев песчаника с гидратонасыщенностью 40-75%. Визуальный осмотр поднятых на поверхность кернов выявил, что гидрат в основном занимает межзеренное поровое пространство. Данный интервал является самым холодным: разница между равновесной температурой гидратообразования и пластовой температурой превышает 4°С.

Гидратный пласт В (942-992 м) состоит из нескольких песчаных пропластков толщиной 5-10 м, разделенных тонкими прослоями (0,5-1 м) свободных от гидратов глин. Насыщенность гидратами варьирует в широких пределах от 40 до 80%. Пористость изменяется от 30 до 40%. Широкий предел изменения пористости и гидратонасыщенности объясняется слоистым строением пласта. Гидратный пласт В подстилается водоносным пропластком мощностью 10 м.

Пласт С (1070-1107 м) состоит из двух пропластков с насыщенностью гидратами в пределах 80-90% и находится в условиях, близких к равновесным. Подошва пласта С совпадает с нижней границей зоны стабильности гидратов. Пористость интервала составляет 30-40%.

Ниже зоны стабильности гидратов отмечается переходная зона газ-вода мощностью 1,4 м. После переходной зоны следует водоносный пласт мощностью 15 м.

По результатам лабораторных исследований установлено, что гидрат состоит из метана (98% и более). Изучение кернового материала показало, что пористая среда в отсутствии гидратов имеет высокую проницаемость (от 100 до 1000 мД), а при насыщении гидратами на 80% проницаемость породы падает до 0,01-0,1 мД.

Плотность запасов газа в гидратах около пробуренных разведочных скважин составила 4,15 млрд. м3 на 1 км2, а запасы в целом по месторождению — 110 млрд. м3 [6].

Месторождение Нанкай. На шельфе Японии уже на протяжении нескольких лет ведутся активные разведочные работы. Первые шесть скважин, пробуренных в период с 1999-2000 гг, доказали наличие трех гидратных пропластков общей мощностью 16 м в интервале 1135-1213 м от поверхности моря (290 м ниже морского дна). Породы представлены в основном песчаниками с пористостью 36% и насыщенностью гидратами порядка 80% [7].

В 2004 г. были пробурены уже 32 скважины при глубинах моря от 720 до 2033 м [8]. Отдельно следует отметить успешное заканчивание в слабоустойчивых гидратных пластах вертикальной и горизонтальной (с длиной горизонтального ствола 100 м) скважин при глубине моря 991 м [9]. Следующим этапом освоения месторождения Нанкай станет экспериментальная добыча газа из этих скважин в 2007 г. К промышленной разработке месторождения Нанкай намечается приступить в 2017 г.

Суммарный объем гидратов эквивалентен 756 млн мгаза на 1 км2 площади в районе пробуренных разведочных скважин. В целом по шельфу Японского моря запасы газа в гидратах могут составлять от 4 трлн до 20 трлн м3 [7].

Гидратные месторождения в России. Основные направления поиска газовых гидратов в России сейчас сосредоточены в Охотском море и на озере Байкал [10]. Однако наибольшие перспективы обнаружения залежей гидратов с промышленными запасами связаны с Восточно-Мессояхским месторождением в Западной Сибири [11]. На основе анализа геолого-геофизической информации сделано предположение о том, что газсалинская пачка находится в благоприятных для гидратообразования условиях. В частности, нижняя граница зоны стабильности газогидратов находится на глубине приблизительно 715 м, т.е. верхняя часть газсалинской пачки (а в некоторых районах и вся пачка) находится в термобарических условиях, благоприятных для существования газогидратов. Опробование скважин результатов не дало, хотя по каротажу данный интервал характеризуется как продуктивный, что можно объяснить снижением проницаемости пород из-за наличия газовых гидратов. В пользу возможного существования гидратов говорит и тот факт, что газсалинская пачка является продуктивной на других рядом расположенных месторождениях. Поэтому, как отмечалось выше, необходимо бурение разведочной скважины с отбором керна. В случае положительных результатов будет открыта газогидратная залежь с запасами ~500 млрд м3.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]