- •Общая и неорганическая химия учебно-методическое пособие
- •Введение
- •Основные теории и законы химии
- •Часть I общая химия
- •1. Основные закономерности протекания химических процессов
- •1.1. Энергетика, направление и глубина протекания химических реакций. Химическое равновесие.
- •1.2. Окислительно-восстановительные реакции
- •1.2.1. Типы окислительно-восстановительных реакций.
- •1.2.2. Направление самопроизвольного протекания окислительно-восстановительных реакций
- •1.3. Учение о растворах
- •1.3.1.Растворимость газов
- •1.3.2. Коллигативные свойства растворов
- •1.3.3. Теория электролитической диссоциации.
- •1.3.4. Теория растворов сильных электролитов.
- •1.3.5. Равновесие между раствором и осадком малорастворимого сильного электролита.
- •1.3.6. Ионизация воды. Ионное произведение воды. Водородный показатель. РН растворов сильных кислот и оснований.
- •1.3.7. Растворы слабых электролитов.
- •1.3.8. Теории кислот и оснований.
- •2. Строение вещества
- •2.1. Строение атома
- •2.1.1. Распределение электронов по орбиталям.
- •2.1.2 Периодический закон.
- •Основные характеристики атомов элементов.
- •Химическая связь.
- •Квантово-механическое описание химической связи.
- •2.2. Комплексные соединения
- •2.2.1. Международная (Женевская) номенклатура комплексных соединений
- •2.2.2. Классификация комплексных соединений.
- •2.2.3. Изомерия комплексных соединений.
- •2.2.4. Свойства комплексных соединений.
- •2.2.5. Образование комплексных соединений.
- •2.2.6. Разрушение комплексных соединений.
- •Часть II химия элементов
- •3.1. Водород
- •3.1.1 Вода как важнейшее соединение водорода.
- •4.1.1. Общая характеристика элементов iiiб группы.
- •4.1.2. Общая характеристика элементов ivб и vб групп.
- •Хром и его соединения.
- •Молибден и вольфрам.
- •4.2.3. Биологическая роль d-элементов VI группы и применение в медицине.
- •4.3.1. Марганец и его соединения.
- •4.4.1. Железо и его соединения.
- •4.4.2. Кобальт и никель.
- •4.4.3. Семейство платины (общая характеристика).
- •4.4.4. Биологическая роль d-элементов VIII группы и применение в медицине.
- •4.5.1. Медь и ее соединения.
- •4.5.2. Серебро и его соединения.
- •4.5.3. Золото и его соединения.
- •4.5.4. Биологическая роль d-элементов I группы и применение в медицине.
- •4.6.1. Цинк и его соединения.
- •4.6.2. Кадмий и его соединения.
- •4.6.4. Ртуть и ее соединения.
- •4.6.4. Биологическая роль d-элементов II группы и применение в медицине.
- •Бор и его соединения.
- •Алюминий и его соединения.
- •Биологическая роль р-элементов III группы и применение в медицине.
- •5.2.1. Углерод и его соединения.
- •5.2.2. Кремний.
- •5.2.3. Элементы подгруппы германия и их соединения.
- •5.2.4. Биологическая роль р-элементов IV группы и применение в медицине.
- •5.3.1. Азот и его соединения.
- •5.3.2. Фосфор и его соединения.
- •5.3.3. Химические свойства важнейших соединений мышьяка, сурьмы и висмута.
- •5.3.4. Биологическая роль р-элементов V группы и применение в медицине.
- •5.4.1. Кислород.
- •5.4.2. Сера и ее соединения.
- •5.4.3. Селен и теллур.
- •5.4.4. Биологическая роль р-элементов VI группы и применение в медицине.
- •5.5.1. Галогены и их соединения.
- •5.5.2. Биологическая роль р-элементов VII группы и применение в медицине.
- •Рекомендуемая литература Основная:
- •Дополнительная:
- •Содержание
Основные теории и законы химии
Закон сохранения энергии: полная энергия изолированной системы остается постоянной, независимо от каких бы то ни было изменений, происходящих в этой системе.
Изолированной (замкнутой) называется система, которая не может обмениваться веществом и энергией с окружающей средой.
Закон сохранения массы: масса изолированной системы остается постоянной, независимо от каких бы то ни было изменений, происходящих в этой системе.
Закон постоянства состава веществ. Если вещество обладает молекулярным строением, то его состав, а, следовательно, и свойства остаются постоянными, независимо от способа получения. Состав и свойства веществ с координационной структурой зависят от способа получения и условий обработки.
Атомно-молекулярная теория.
Молекула - это мельчайшая частица вещества, сохраняющая его основные химические свойства. Атом - наименьшая частица вещества, неделимая при химических реакциях. Химический элемент - это вид атомов с определенным зарядом ядра (а, следовательно, с определенной электронной конфигурацией и определенной совокупностью свойств).
Простое вещество - это вещество, состоящее из атомов одного элемента. Способность элемента существовать в виде нескольких простых веществ называется аллотропией (от греч. аллос - другой, тропос - поворот, свойство).
Сложное вещество или химическое соединение - это вещество, состоящее из атомов разных элементов.
Периодический закон. Периодический закон и периодическая система, открытые Д.И.Менделеевым, представляют собой наиболее универсальный способ классификации химических элементов и лежат в основе современной химии. Современная формулировка Периодического закона - свойства элементов, а также формы и свойства их соединений находятся в периодической зависимости от величины заряда ядра их атомов. Свойства элемента определяются структурой его электронных оболочек, а ядро создает поле, в котором движутся электроны.
Часть I общая химия
1. Основные закономерности протекания химических процессов
1.1. Энергетика, направление и глубина протекания химических реакций. Химическое равновесие.
Химическая термодинамика рассматривает энергетические аспекты различных процессов и определяет условия их самопроизвольного протекания.
Химическая термодинамика является уникальной теорией; рассматривая только макроскопические свойства вещества может предсказать возможное поведение системы и ответить на вопрос: возможна ли химическая реакция (физико-химический процесс) в данных условиях или нет.
Первое начало (первый закон) термодинамики – это всеобщий закон природы, закон сохранения и превращения энергии, соответствующий основному положению диалектического материализма о вечности и неуничтожимости движения. Впервые этот закон в 1842 г. сформулировал выдающийся немецкий физик Ю. Мейер, врач по образованию.
Энергия не исчезает и не возникает из ничего, а только превращается из одного вида в другой в строго эквивалентных соотношениях.
В зависимости от вида системы первый закон термодинамики имеет различные формулировки.
В изолированной системе внутренняя энергия постоянна, т.е. ∆U = 0.
Для закрытой системы:
Если к закрытой системе подвести теплоту, то эта энергия расходуется на увеличение внутренней энергии системы и на совершение системой работы против внешних сил окружающей среды.
Математическое выражение первого закона термодинамики в интегральной форме имеет вид: Q = ΔU + W (1).
Здесь: ΔU – изменение внутренней энергии. Внутренняя энергия представляет собой общий запас энергии системы за вычетом кинетической энергии движения центра масс и потенциальной энергии системы. Этот общий запас включает энергию поступательного и вращательного движения молекул, энергию колебательного движения атомов и атомных групп, составляющих молекулы, энергию взаимодействия ядер и электронов, энергию взаимодействия нуклонов в ядре.
Абсолютное значение внутренней энергии не известно, т.к. не возможно перевести систему в состояние, где внутренняя энергия была бы равна нулю. Поэтому в термодинамических расчетах пользуются разностными значениями внутренней энергии (∆U). Измеряется внутренняя энергия в Дж или Дж/моль.
Теплота Q и работа W. Это две формы передачи энергии к системе и наоборот. Работа характеризует направленную передачу энергии, а теплота – хаотическую. Эти функции характеризуют не состояние, а процесс передачи энергии, и являются функциями процесса или функциями пути. Измеряются они в Дж или в Дж/моль. Теплота, переданная системе в ходе процесса, является отрицательной (теплота поглощается, Q < 0)), а такой процесс называется эндотермическим. Экзотермическим называется процесс, в котором теплота выделяется (передается от системы к окружающей среде). В этом случае теплота положительная (Q > 0).
Для системы идеального газа в зависимости от протекаемого процесса математический вид первого закона термодинамики меняется:
Для изотермического процесса (Т = const) ΔU = 0 и Q = W (2).
Для изохорного процесса (V=const) W=0 и QV =ΔU:
Для изобарного процесса (р=const).
Qр = ΔU + рΔV = (Uкон – Uнач) + (рVкон – рVнач) = (Uкон - рVкон) – (Uнач – рVнач).
Сумма внутренней энергии системы и произведения объема на давление (U + рV) называют энтальпией (Н). Поэтому Qр = ΔU + рΔV = Δ Н.
Энтальпия Н – это функция специально введенная в термодинамику, которая характеризует общий запас энергии системы при постоянном давлении (внутренняя энергия – при постоянном объеме). Абсолютное ее значение не известно, поэтому в расчетах используют ∆Н. Измеряется энтальпия в Дж или Дж/моль.
Энтальпия является функцией состояния системы. Одним из самых важных свойств функций состояния является следующее: при переходе системы из одного состояния в другое изменение функции состояния не зависит от пути перехода (процесса), а определяется лишь начальным и конечным её состояниями. К ним относят внутреннюю энергию U [Дж], энтальпию H [Дж], энтропию S [Дж/К], энергию Гиббса G [Дж], энергию Гельмгольца A [Дж].
Энтальпия системы является экстенсивным параметром и зависит от количества вещества, температуры и давления, поэтому изменение энтальпии в результате химической реакции или других процессов определяют при стандартных условиях.
Стандартные условия: количество вещества – 1 моль;
давление – 1 атм. = 760 мм рт. ст. = 101325 Па; температура – 298 К ≈ 250С.
В термодинамики для оценки энергетического состояния веществ используют значения стандартных энтальпий образования этих веществ, обозначаемые ∆Н0обр, кДж/моль и стандартных энтальпий сгорания - ∆Н0сг, кДж/моль.
Стандартная энтальпия образования простых веществ в их наиболее термодинамически устойчивом агрегатном и аллотропном состоянии при стандартных условиях принимается равной нулю.
Например, для кислорода ∆Н0обр(О2) = 0, для графита ∆Н0обр(Сграфита) = 0. Однако стандартная энтальпия образования озона ∆Н0обр(О3) = 142,2 кДж/моль, алмаза ∆Н0обр(Салмаз) = 1,8 кДж/моль.
Стандартная энтальпия образования сложных веществ равна энтальпии реакции получения 1 моль этого вещества из простых веществ при стандартных условиях.
Например, стандартная энтальпия образования этанола равна стандартной энтальпии гипотетической реакции: 2Сграфит + 3Н2(г) + 0,5О2(г) = С2Н5ОН (ж), ∆Н0f(С2Н5ОН) = -277 кДж/моль.
Стандартная энтальпия сгорания простейших (высших) оксидов в их наиболее устойчивых состояниях равна нулю.
Например, для воды ∆Н0сг(Н2О(ж)) = 0; для углекислого газа ∆Н0сг(СО2(г)) = 0 и т.д.
Стандартная энтальпия сгорания сложных веществ равна энтальпии реакции сгорания в атмосфере кислорода 1 моль вещества при стандартных условиях до простейших оксидов. При этом все участники реакции должны быть в устойчивых агрегатных состояниях.
Например, стандартная энтальпия сгорания этанола равна стандартной энтальпии реакции: С2Н5ОН + 7/2О2 = 2СО2 + 3Н2О, ∆Н0сг(С2Н5ОН) = -1370 кДж/моль.
Значения стандартных энтальпий образования и сгорания сложного вещества зависят от природы вещества и его агрегатного состояния. Числовые значения стандартных энтальпий образования (сгорания) веществ приводятся в справочниках.
Изучением тепловых эффектов (энтальпий) химических реакций и фазовых переходов занимается термохимия.
Энтальпию реакции можно определить как экспериментально, так и методом расчета с использованием стандартных энтальпий образования (сгорания) веществ, участвующих в химической реакции, на основе закона, открытого академиком РАН Г.И. Гессом (1840).
Тепловой эффект реакции, протекающей при постоянном давлении или объеме и при условии, что продукты реакции и исходные вещества имеют одинаковую температуру и отсутствуют другие виды работ, кроме работы расширения, не зависит от пути процесса, а определяется только начальным и конечным состоянием системы.
В термохимических расчетах большое значение имеют следствия из закона Гесса.
Первое следствие.
Тепловой эффект реакции (энтальпия реакции) равен разности между суммой энтальпий образования продуктов реакции и суммой энтальпий образования исходных веществ с учетом их стехиометрических коэффициентов:
.
( 2 )
Это следствие позволяет вычислить энтальпии различных реакций (в том числе и биохимических, осуществление которых in vitro невозможно), используя табличные значения стандартных энтальпий образования продуктов реакции и исходных веществ.
Второе следствие.
Тепловой эффект реакции (энтальпия реакции) равен разности между суммой энтальпий сгорания исходных веществ и суммой энтальпий сгорания продуктов с учетом их стехиометрических коэффициентов:
.
( 3 )
Третье следствие, известное также как закон Лавуазье – Лапласа.
Тепловой эффект образования соединения из данных веществ равен взятому с обратным знаком тепловому эффекту разложения данного соединения при этих же условиях до тех же исходных веществ.
Н0обр = -Н0cг. ( 4 )
Из закона Гесса также следует, что неизвестная энтальпия реакции может быть получена путем алгебраического суммирования известных энтальпий соответствующим образом подобранных химических реакций.
Первый закон термодинамики и вытекающие из него законы термохимии позволяют составить энергетический баланс термодинамического процесса, но не позволяют сделать заключение о возможности и направлении химического процесса и состоянии равновесия.
Второй закон термодинамики позволяет судить о направлении самопроизвольных процессов и совместно с первым началом устанавливает множество точных количественных соотношений между различными макроскопическими параметрами систем в состоянии термодинамического равновесия.
Процессы, происходящие в определенном направлении без затрат энергии из внешней среды и завершающиеся установлением состояния равновесия, называют самопроизвольными (например, взрыв, коррозия, разряд аккумулятора). Несамопроизвольные процессы (например, заряд аккумулятора) требуют подвода энергии из внешнего источника.
Процессы, протекающие в реальной жизни, являются самопроизвольными и необратимыми. Обратимый процесс (равновесный процесс, который может возвратиться в первоначальное состояние без каких-либо энергетических изменений в окружающей среде или в самой системе под влиянием бесконечно малой силы) является идеализацией.
Во всех необратимых
процессах осуществляется более
равномерное распределение энергии и
вещества, происходит выравнивание в
системе температур и других интенсивных
параметров. Разупорядоченность, или
степень беспорядка системы может быть
определена количественно и называется
энтропией. Эту функцию ввел Клаузиус и
обозначил буквой S. Подобно
энтальпии энтропия является экстенсивным
свойством системы и функцией
состояния системы. Поэтому изменении
энтропии в ходе химической реакции
может быть найдено в соответствии с
первым следствием из закона Гесса:
.
( 2 )
Формулировки второго начала термодинамики:
- Теплота не может самопроизвольно переходить от более холодного тела к более горячему (Клаузиус).
- Теплота наименее нагретого из тел системы не может служить источником работы, т.е. невозможно превращение только теплоты в работу, тогда как превращение работы в теплоту может быть единственным результатом процесса (Томсон).
- В изолированной системе самопроизвольные (необратимые) процессы происходят в направлении увеличения энтропии системы: dS > 0.
В случае открытых и закрытых систем энтропия не может быть критерием направленности процесс, т.к. кроме изменений в системе, необходимо учитывать изменения в окружающей среде. А это далеко не всегда возможно.
Для таких систем были введены специальные функции состояния, по изменению которых можно судить о направлении самопроизвольного процесса – термодинамические потенциалы.
В зависимости от системы и процесса роль термодинамического потенциала выполняют различные функции:
в изолированной системе (U=const и V=const) – энтропия;
изотермо- изобарный процесс - энергия Гиббса (G);
изотермо- изохорный процесс - энергия Гельмгольца (F);
при S=const и V=const - внутренняя энергия (U);
при S=const и p=const - энтальпия (H).
Термодинамические потенциалы являются критериями направления процесса: в ходе самопроизвольного процесса соответствующий термодинамический потенциал при постоянстве естественных переменных убывает: ∆US,V < 0; ∆HS,p < 0; ∆AT,V < 0; ∆Gp,T < 0, (энтропия – возрастает ∆SU,V > 0). При этом потенциал стремится к некоему экстремальному значению: энтропия – к максимуму, все остальные – к минимуму, которому соответствуют равновесное состояние системы. В состоянии равновесия изменения всех потенциалов становиться равным нулю.
Для процессов, происходящих на Земле и в живых организмах, наибольшее значение имеет изотермо-изобарный потенциал – энергия Гиббса. Биохимические реакции, сопровождающиеся уменьшением энергии Гиббса, называются экзэргоническими реакциями, они могут совершаться самопроизвольно. Биохимические реакции, сопровождающиеся увеличением энергии Гиббса, называются эндэргоническими, и они не возможны без внешнего подвода энергии. Например, процесс фотосинтеза в растениях идет только под воздействием солнечной энергии. В живых организмах эндэргонические реакции происходят за счет их сопряжения с экзэргоническими реакциями.
Рассчитать стандартную энергию Гиббса можно по уравнениям:
1) Уравнение изотермы: ∆G0 = -RTlnKp.
2) Следствие из закона Гесса:
∆G0298 = (i∆G0i)прод - (i∆G0i)реаг.
3) Уравнение Гиббса – Гельмгольца: ∆G0 = ∆Н0 - Т∆S0 (при условии, что все составляющие уравнения взяты при одинаковой температуре).
Вопросы для самоконтроля:
1. Почему при плавлении льда температура не изменяется, несмотря на то, что система поглощает тепло из окружающей среды.
Может ли эндотермическая реакция идти самопроизвольно в закрытой
системе, если энтропия системы: а). уменьшается; б). увеличивается.
В какую сторону сместится равновесие в системе: CaCO3(т)<=>CaO(т)+CO2(г) –Q, если:
а) уменьшить температуру;
б).увеличить давление?
Энергия активации одной реакции 210 кДж, второй – 270 кДж. Какая реакция идет с большей скоростью при прочих равных условиях?
Константа химического равновесия обратимой реакции равна 10. В какую сторону процесс идет самопроизвольно?
В каком агрегатном состоянии H2O обладает наибольшим значением энтропии.
