Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
04. макет конспектов лекций.doc
Скачиваний:
2
Добавлен:
01.05.2025
Размер:
22.07 Mб
Скачать

3 Краткое содержание вопросов

3.1 Центробежные насосы.

Для питания котлов, подпитки и циркуляции воды в системе отопления применяются центробежные и поршневые насосы с электрическим или паровым приводом, пароструйные инжекто­ры, насосы с ручным приводом и водопроводная сеть.

Широкое применение в котельных получили центробежные насосы. Насос типа К (рис. 10.1) является горизонтальным одно­ступенчатым с односторонним всасыванием. Он состоит из чугун­ного корпуса 1, внутренняя поверхность которого выполнена в виде улитки с диффузорным каналом, крышки 2, исполненной заодно с нагнетательным патрубком 3. Крышка шпильками крепит­ся к корпусу. Нагнетательный (напорный) патрубок 3 расположен под углом 90° к оси насоса. Рабочее колесо 4 с лопатками закреп­лено на конце вала 5. Возникающее во время работы насоса усилие воспринимается подшипниками, расположенными в масляной ванне 8. Для предотвращения утечки воды из насоса используется сальниковое уплотнение 9. Вал 5 насоса соединяется с валом элек­тродвигателя 7 с помощью муфты 6.

Рис. 10.1. Центробежный насос типа К:

1 — корпус; 2 — крышка корпуса; 3 — нагнетательный патрубок; 4 — рабочее

колесо; 5 — вал; 6 — муфта; 7 — электродвигатель; 8 — масляная ванна; 9 —

сальниковое уплотнение; 10 — всасывающий патрубок

Рис. 10.2. Схема уста­новки центробежного насоса:

1— напорный трубопро­вод; 2— перепускное уст­ройство — байпас;

3 — лопастное колесо; 4 — кожух-улитка; 5— прием­ный клапан с сеткой;

6 — всасывающий трубопро­вод; 7 — запорное уст­ройство на всасывающем трубопроводе; 8 — тер­мометр; 9 — вакуумметр; 10 — запорное устройство на нагнетательном трубо­проводе; 11 — обратный клапан; 12 — манометр; 13 — воронка для залив­ки насоса

Вода через всасывающий патрубок 10 поступает в насос и при вращении рабочего колеса 4 под действием центробежной силы отбрасывается к стенкам насоса и через нагнетательный патру­бок 3 подается в напорную линию.

В самой высокой точке корпуса имеется закрытое пробкой от­верстие для выпуска воздуха из корпуса и всасывающего патрубка в момент заливки насоса водой при первоначальном пуске. При продолжительном останове вода сливается из насоса через отвер­стие в нижней части корпуса, также закрытое пробкой.

Одноступенчатые насосы имеют одно рабочее колесо, создают сравнительно небольшой напор (от 12 до 55 м вод. ст.) и обеспечи­вают производительность 6,7... 160 м3/ч. Многоступенчатые насосы имеют от 3 до 12 ступеней (рабочих колес) и создают большой напор. Производительность их зависит от диаметра рабочих колес и скорости вращения.

На центробежных насосах устанавливается следующая арматура и КИП:

  • на всасывающей линии — приемный клапан 5 (рис. 10.2) с сеткой, запорное устройство 7, термометр 8, вакуумметр 9;

  • на нагнетательной линии — запорное устройство 10, обрат­ный клапан 11, манометр 12.

Для предупреждения перегрева и повреждения насоса при от­сутствии расхода воды служит рециркуляционный трубопровод с вентилем.

Перед пуском насоса необходимо провести осмотр, проверить наличие смазки в подшипниках, набивку сальников, отсутствие заедания при проворачивании рабочего колеса. Чтобы пустить на­сос в работу, необходимо залить его и всасывающий трубопровод через воронку 13 водой, открыть запорное устройство 7 на вса­сывающем трубопроводе, закрыть запорное устройство 10 на на­гнетательном трубопроводе, включить электродвигатель и через 40...50 с, открывая запорное устройство на нагнетательном трубо­проводе, установить заданное давление.

Во время работы насосов необходимо следить за температурой подшипников, которая не должна превышать 60...70 °С, состоя­нием упругой муфты, сальниковой набивки, показаниями мано­метра, термометра, вакуумметра.

Операции с целью останова насоса следует выполнять в следу­ющей последовательности: закрыть запорное устройство 10 на на­гнетательном трубопроводе, выключить электродвигатель, закрыть запорное устройство 7 на всасывающем трубопроводе, слить воду из насоса и трубопровода.

Для перехода с рабочего насоса на резервный необходимо за­полнить резервный насос водой, включить электродвигатель ре­зервного насоса, одновременно на резервном насосе открыть, а на рабочем насосе закрыть запорную арматуру на нагнетательной линии; после закрытия запорного устройства на нагнетательном трубопроводе включить электродвигатель рабочего насоса; сделать запись в рабочем журнале о переходе с рабочего насоса на резерв­ный с указанием времени.

К неисправностям центробежных насосов относятся:

  • отсутствие смазки подшипников;

  • утечка воды через сальниковые уплотнения;

  • износ соединительной муфты;

  • износ лопаток рабочего колеса;

  • понижение давления, уменьшение расхода воды и КПД в ре­зультате кавитации.

Кавитация в насосах происходит вследствие падения давления на всасывающей стороне насоса, которое приводит к вскипанию воды и образованию в жидкости пустот, заполненных паром. Пу­зырьки пара, двигаясь вместе с водой по лопаткам рабочего ко­леса, попадают в область более высоких давлений, где происхо­дит их резкая конденсация. Пузырьки пара резко уменьшаются в объеме, и жидкость, стремясь занять освободившееся простран­ство, приобретает в этих местах большую скорость. В итоге за счет кавитации давление достигает сотен атмосфер, возникают силь­ные местные гидравлические удары жидкости о стенки корпуса и лопатки рабочего колеса. Разрушение происходит настолько энер­гично, что насос выходит из строя буквально через несколько суток.

3.2 Инжекторы.

Для питания котлов в небольших котельных в ряде случаев при­меняются инжекторы. Инжектор (рис. 10.3) — это пароструйный насос, в котором струя пара, поступающая с большой скоростью, подсасывает воду и подает ее в котел. При повороте рукоятки / в положение «Пуск» пусковой клапан #приподнимается и открыва­ет доступ пара в суживающийся паровой конус 2 инжектора. Пар, выходя из парового конуса с большой скоростью, создает вокруг сопла разрежение, и вода засасывается в инжектор. Далее вода по­ступает в смесительный конус 3, где пар перемешивается с водой и конденсируется, нагревая при этом воду. Смесительный конус также суживается, вследствие чего скорость питательной воды при выходе из него возрастает. Питательная вода из смесительного ко­нуса поступает в расширяющийся нагнетательный конус 5, где скорость ее уменьшается, а давление увеличивается настолько, что становится выше, чем в котле. При этом открывается обратный питательный клапан 6 и вода поступает в котел.

В начале пуска инжектора пар увлекает с собой воздух и поэто­му не конденсируется, пока не засосется вода. В этот период между смесительным и нагнета­тельными конусами создается избыточное давление, и вода в смеси с паром выбрасывается через вестовой клапан 4 в вес­товую трубу. Затем, когда воздух будет вытеснен из инжектора и в него засосется вода, пар нач­нет конденсироваться в смеси­тельной полости, и за счет боль­шой скорости горячей воды на выходе из смесительного кону­са вокруг него возникнет разре­жение, под действием которого вестовой клапан присосется к седлу, а вода направиться в котел. Во избежание срыва работы инжекторов температура питательной воды должна быть не выше 40 0С и высота засасывания не более 2 м.

Рис. 10.3. Инжектор:

1 — рукоятка пускового клапана; 2, 3 и 5 — паровой, смесительный и нагнета­тельный конусы; 4, 6 и 8 — вестовой, обратный и пусковой игольчатый кла­паны; 7— корпус инжектора

3.3 Классификация арматуры котельного агрегата.

Арматурой называют приборы и предохранительные устрой­ства, обеспечивающие безопасную и безаварийную работу котла, а также устройства, служащие для управления и регулирования котельного агрегата.

Для выполнения этих задач котлы должны быть оснащены сле­дующим оборудованием:

  • устройствами, предохраняющими от повышения давления (предохранительными устройствами);

  • указателями уровня воды;

  • манометрами;

  • запорной и регулирующей арматурой.

Арматура, применяемая для трубопроводов воды и водяного пара, в зависимости от назначения подразделяется на четыре класса: запорная, регулирующая, предохранительная и контрольная.

Запорная арматура служит только для герметичного отклю­чения котельного агрегата или его элементов, а также отдельных участков или всего трубопровода от сети. К запорной арматуре от­носятся задвижки, вентили и краны.

Регулирующая арматура предназначена для изменения или поддержания заданного давления или расхода среды. К такой ар­матуре относятся регулировочные вентили, дроссельные клапа­ны, питательные клапаны, приборы для автоматического регули­рования. Следует отметить, что использовать для регулирования запорную арматуру нежелательно, так как вследствие большой скорости рабочей среды, образующейся при дросселировании, детали запорных органов быстро изнашиваются.

Предохранительная арматура служит для ограничения давления, расхода и направления движения среды. К ней относят­ся предохранительные клапаны на питательных линиях, паропро­водах, барабанах, обратные клапаны на питательных линиях.

К контрольной арматуре относятся указатели уровня воды и пробкоспускные краны.

Материалы для изготовления арматуры выбирают в зависи­мости от давления и температуры рабочей среды. Для низкого давления (до 2,4 МПа) и температуры среды по 300 0С корпусы и крышки арматуры можно изготовлять из чугуна. Арматуру, пред­назначенную для воды под более высоким давлением, исполняют из стали.

3.4 Запорная арматура.

Запорная арматура должна обеспечивать плотность отключения в закрытом состоянии и оказывать минимальное сопротивление протекающей среде в открытом состоянии. В качестве запорной арматуры применяют задвижки и вентили. Задвижки имеют отно­сительно небольшое гидравлическое сопротивление, требуют мень­шего, чем вентили, усилия на открывание и закрывание, допус­кают протекание среды в обоих направлениях, имеют меньшую длину корпуса, могут быть изготовлены большого проходного се­чения. К недостаткам задвижек относятся: более сложная, чем у вентилей, конструкция, быстрый износ уплотнительных поверх­ностей затвора и больший подъем затвора при полном открыва­нии, что увеличивает их габариты. Соответственно с этим вентили как запорные органы применяют преимущественно при неболь­шом проходном сечении (диаметр трубопровода до 100 мм), когда требуется большая плотность отключения (например, для дренаж­ных и спускных трубопроводов), и в основном они используются в качестве регулирующих органов.

На рис. 10.4, а показан наиболее распространенный тип венти­ля низкого и среднего давления. Он состоит из корпуса 4, в кото­рый запрессовано стальное или бронзовое кольцо (седло 5), и кла­пана (тарелки) 6, соединенного со шпинделем 7. На конце шпин­деля имеется резьба, с помощью которой он при вращении махо­вика / во время закрывания или открывания вентиля ввинчивает­ся в траверсу 9. Присоединение запорного вентиля к трубопроводу осуществляется с помощью фланцев 3.

На рис. 10.4, б показан запорный вентиль высокого давления без фланцев; он крепится к трубопроводам посредством сварки.

Расход пара (или воды), проходящего через вентиль, регулируется подъемом или опусканием клапана. Движение среды через вентиль может осуществляться в любом направлении и зависит лишь от удоб­ства его открывания или закрывания. Если жидкость или пар подво­дится под клапан, то это значительно облегчает открывание венти­ля и, кроме того, разгружает сальниковое уплотнение от давления при полном его закрывании. Однако, при таком способе подвода среды требуется большое усилие для полного закрывания вентиля.

Если жидкость или пар подается на клапан вентиля, то плот­ность его закрывания увеличивается и несколько затрудняется на­чальное открывание из-за давления среды на клапан. Это является главным недостатком такого способа подвода жидкости или пара.

Рис. 10.4. Вентили запорные:

а — фланцевый низкого и среднего давления; 6 — высокого давления, бесфланце­вый;

1 — маховик; 2 — сальниковое уплотнение; 3 — фланец; 4 — корпус; 5 — седло;

6 — клапан (тарелка); 7 — шпиндель; 8 — крышка; 9 — траверса; 10 -втулка;

11 — разгрузочный клапан: 12 — шестерня

В арматуре малого диаметра вода и пар обычно подводятся под клапан. У большинства вентилей, наоборот, подача осуществляется на клапан. Для облегчения открывания крупных вентилей применя­ют разгрузочные обводные (байпасные) линии малого диаметра, служащие для выравнивания давления среды до и после вентиля. Прежде чем открыть основной вентиль, открывают байпас и по­сле того, как в трубопроводе до и после вентиля установится оди­наковое давление, приступают к открыванию основного вентиля.

Для этой же цели некоторые вентили выполняются с располо­женными на одном шпинделе двумя клапанами (тарелками), один из которых имеет меньший размер и устанавливается в средней части большого клапана (рис. 10.4, б). При подъеме шпинделя сна­чала поднимается малый разгрузочный клапан 11 на определен­ную высоту, а затем после выравнивания давления при дальней­шем открывании вентиля поднимается большой клапан 6.

Для облегчения открывания вентиля привод шпинделя осуще­ствлен через две цилиндрические шестерни 12 от маховика диа­метром до 500 мм.

При эксплуатации каждый вентиль должен обеспечивать пол­ное перекрывание трубопроводов. Для этого необходимо, чтобы клапан опускался на седло равномерно, без перекосов. Если вен­тиль «пропускает» вследствие неполного перекрывания сечения трубы, необходимо выяснить причину и устранить ее. Причинами неполного перекрывания могут быть попадание постороннего тела между клапаном и седлом, износ седла или клапана, образование раковин и поперечных рисок и т.д. При обнаружении неплотно­стей прежде всего следует немного приоткрыть вентиль и снова закрыть его. Если причиной неплотного закрывания был посто­ронний предмет, то поток может его смыть.

Вентиль является надежным запорным и регулирующим орга­ном. Однако он создает большое сопротивление потоку среды вслед­ствие резкого двукратного изменения направления ее движения.

На электростанциях и в котельных нашли широкое примене­ние задвижки, которые создают значительно меньшее сопротив­ление потоку среды, чем вентили. Жидкость или пар к задвижкам подводятся с любой стороны.

Задвижки могут иметь различные затворы (параллельные и кли­новые), выдвижные и невыдвижные шпиндели.

На рис. 10.5, а приведена нормальная задвижка с параллельны­ми уплотнительными дисками. Задвижка состоит из чугунного кор­пуса 7, крышки 8, нарезной втулки, маховика 1, выдвижного шпинделя 3, уплотнительных колец 4 и дисков 5. Между дисками устанавливается распорное устройство 6. При вращении маховика по часовой стрелке шпиндель вместе с дисками опускается, рас­порное устройство упирается в нижнюю часть корпуса и раздвига­ет диски, плотно прижимая их к уплотнительным кольцам и за­крывая проход воде или пару. В задвижках с выдвижным шпинде­лем шпиндель и маховик имеют квадратную резьбу, и при враще­нии маховика шпиндель вывинчивается или ввинчивается в него, увлекая за собой диски.

Согласно Правилам Госгортехнадзора России у всех вновь уста­навливаемых стационарных котлов паропроизводительносгью бо­лее 4 т/ч управление парозапорными органами должно осуществ­ляться дистанционно с рабочего места машиниста котла. На элек­тростанциях или в больших отопительных котельных часто приме­няются задвижки или вентили с электрическим приводом, позво­ляющим открывать или закрывать их дистанционно. На рис. 10.5, б приведена бесфланцевая задвижка высокого давления с дистанци­онным приводом. Бесфланцевая арматура непосредственно прива­ривается к трубопроводу.

В клиновых задвижках с невыдвижным шпинделем 5 (рис. 10.5, в) последний вращается вместе с маховиком 1. На конце шпинделя 3 имеется резьба, которая входит в нарезную втулку 13, распо­ложенную в верхней части клинового затвора 14. При вращении маховика шпиндель 3 из-за имеющегося на нем буртика 12 не мо­жет подняться и будет вращаться вместе с маховиком. При этом нарезная втулка 13 будет вращаться по его резьбе, поднимая или опуская затвор 14 задвижки.

Рис. 10.5. Задвижки:

а — нормальная с параллельными уплотнительными дисками и выдвижным шпин­делем;

б — бесфланцевая высокого давления с дистанционным приводом;

в — клиновая с невыдвижным шпинделем;

1 — маховик; 2 — сальниковая набивка; 3 — шпиндель; 4 — уплотнительные кольца;

5 — уплогнительные диски; 6 — распорное устройство; 7 — корпус: 8— крышка;

9— траверса; 10— шарнир; // — зубчатая передача; 12 — буртик; 13 — нарезная втулка; 14 — клиновой затвор

Для надежной работы арматуры очень важно, чтобы место прохо­да шпинделя было тщательно обработано (отшлифовано) и уплот­нено. Уплотнение достигается при помощи сальниковой набивки 2 и грундбуксы (сальникового уплотнения). Грундбукса с внешней стороны имеет резьбу, при помощи которой она ввинчивается в крышку и, таким образом, уплотняет набивку.

В качестве запорного устройства для низкого давления среды (0,3...0,5 МПа) применяются пробковые краны. Краны предназна­чены для быстрого открывания и закрывания прохода в трубопро­воде, а также для регулирования расхода. Пробковые краны по способу уплотнения бывают натяжные (рис. 10.6, а) и сальнико­вые (рис. 10.6, б); по способу соединения — муфтовые, фланцевые и цапковые; по материалу корпуса и пробки — чугунные, бронзо­вые и комбинированные (чугунный корпус с бронзовой пробкой).

Основными элементами кранов являются корпус 1 и кониче­ская пробка 2 с отверстием для прохода газа. На четырехгранной головке 3 под ключ наносится риска, совпадающая с направлением отверстия в пробке. Если риска на головке совпадает с направ­лением трубопровода, на котором установлен кран, то проход для среды открыт, а если риска направлена поперек трубопровода, то проход закрыт.

Рис. 10.6. Краны:

а — натяжной газовый муфтовый; 6— сальниковый;

1— корпус; 2— пробка; 3- четырехгранная головка; 4 — шайба; 5 — гайка;

6 — шпилька с резьбой; 7 -опорное кольцо; 8 — сальниковая набивка;

9 — крышка сальника; 10 — болт

В натяжных кранах в нижней части пробки есть шпилька 6 с резьбой (см. рис. 10.6, а), на которую надевается шайба 4 и накру­чивается гайка 5. Плотность в этих кранах обеспечивается натяже­нием гайки. Краны, устанавливаемые на газопроводах, должны иметь упоры, ограничивающие поворот пробки в границах 90°.

Плотность в сальниковых кранах обеспечивается сальниковой набивкой 8. Уплотнение ее осуществляется затягиванием сальника с помощью крышки 9 сальника. Для облегчения разборки сальни­кового крана в нижней части корпуса устанавливается отжимной болт 10.

В самосмазывающихся кранах (рис. 10.7) на конусных или ци­линдрических уплотнительных поверхностях корпусов и пробок имеются канавки 4. При заполнении канавок смазкой снижаются давление, необходимое для герметичного закрытия прохода, и усилие, необходимое для поворота пробки. Периодическая подача смазки в канавки корпуса 6 и пробки 5 осуществляется нажимным болтом 1.

Трехходовой кран (рис. 10.8) устанавливается между маномет­ром и сифонной трубкой, которая защищает трубчатую пружину манометра от чрезмерного нагрева при измерении давления пара или горячей воды. На ручке трехходового крана в виде буквы Т на­несены риски, совпадающие с направлениями каналов в пробке. Поворотом ручки, можно поставить кран в следующие положения:

  • рабочее положение — манометр соединен с источником дав­ления (барабан котла, трубопровод и т.д.);

  • проверка рабочего манометра постановкой стрелки на нуль (манометр при этом соединен с атмосферой);

  • проверка рабочего манометра контрольным (все отверстия в пробке при этом совпадают с отверстиями в корпусе крана);

  • продувка сифонной трубки (источник давления соединен с атмосферой);

  • нейтральное положение для охлаждения воды или конденса­ции пара в сифонной трубке (отверстия в пробке и корпусе не совпадают). В этом положении можно заменить неисправный ма­нометр.

Рис. 10.7. Чугунный самосмазывающийся кран:

1— болт; 2 — шариковый клапан; 3 — прокладка; 4 — канавки; 5 — пробка;

6 — корпус

Рис. 10.7. Трехходовой кран:

а — положения 1V трехходового крана; б — детали крана; в — крепление кон­трольного манометра для проверки рабочего манометра; I— рабочее положение;

II — постановка стрелки на ноль; III — продувка сифонной трубки; IV— проме­жуточное положение (набор конденсата в сифонной трубке); V— проверка рабо­чего манометра контрольным; 1— фланец для контрольного манометра; 2 — штуцер для манометра; 3— пробка крана: 4— риски; 5— ниппель для сифонной трубки;

6 — отверстия в пробке; 7 — гайка для затяжки пробки; 8 — скоба;

9 — контрольный манометр: 10 — сифонная трубка

3.5 Предохранительные, обратные и регулирующие клапаны.

Предохранительные клапаны обеспечивают автоматический вы­пуск пара или воды из котлов, пароперегревателей и отключаемых (по воде) экономайзеров, в которых давление поднялось выше нормы. Они делятся на рычажно-грузовые, пружинные и импульсные.

На каждом паровом и водогрейном котлах, отключаемых по рабочей среде экономайзеров, должно быть установлено не менее двух предохранительных клапанов (рабочий и контрольный). Пред­охранительные клапаны защищают котлы, пароперегреватели и водяные экономайзеры при превышении в них давления более чем на 10% расчетного (разрешенного).

В рычажном предохранительном клапане (рис. 10.8, а) выход пара из клапана закрывается тарелкой 8, которая грузом 3, закреп­ленным на рычаге 9, прижимается к седлу 7, вставленному в кор­пус 6. Направляющие ребра тарелки не дают ей перекашиваться относительно седла. Рычажный контрольный клапан после настрой­ки заключают в кожух 1 и закрывают на замок 4. Для проверки работы клапана к рычагу прикрепляют цепочку 2, которую про­пускают через крышку футляра. Для выхода пара в корпусе имеет­ся отверстие.

Рис 10.8. Предохранительные клапаны:

а — рычажный грузовой; 6 — пружинный;

1 — кожух предохранительного клапа­на; 2 — цепочка для подрыва клапана; 3 — груз;

4 — замок; 5 — шток; 6 — корпус; 7— седло; 8 — тарелка; 9 — рычаг;

10 — нажимной винт; 11— пружина; 12 — ручка для открывания клапана

Предохранительные клапаны настраивают на рабочее давление при гидравлическом испытании и проверяют при растопке котла. После того как давление пара в паровом котле поднимется до ра­бочего, окончательно закрепляют грузы на рычагах или нажимные винты пружинных клапанов.

В пружинных предохранительных клапанах (рис. 10.8, б) давле­ние на тарелку 8 создает пружина 11. Для настройки предохрани­тельных клапанов на срабатывание при необходимом давлении используются нажимные винты 10.

Импульсные предохранительные клапаны устанавливаются на паровых котлах с рабочим давлением более 3,9 МПа.

Обратные клапаны пропускают среду только в одном на­правлении и предназначены для предотвращения движения среды в противоположном направлении. По устройству они делятся на подъемные и поворотные, по способу соединения с трубопрово­дом — на муфтовые и фланцевые.

Обратный подъемный клапан (рис. 10.9, а) состоит из кор­пуса 2, в круглое проходное отверстие которого впрессовано брон­зовое седло 4, закрываемое клапанной тарелкой 3. Для плотного закрывания клапана тарелка притирается к седлу. Сверху обратно­го клапана расположена крышка, куда входит направляющий шток тарелки. При движении воды тарелка поднимается, проходное отверстие открывается, и вода проходит через клапан. При движении воды в обратном направлении тарелка опускается, и обратное дви­жение воды прекращается.

Обратный поворотный клапан (рис. 10.9, б) состоит из кор­пуса 2 с шарнирно закрепленной тарелкой (захлопкой), которая под давлением движущейся среды поднимается, открывая проход для воды. При выключении насоса или аварийном снижении дав­ления в питательном трубопроводе тарелка падает, клапан закры­вается и обратное движение воды прекращается.

Подъемные клапаны применимы только на горизонтальных участках трубопроводов, поворотные — на горизонтальных и вер­тикальных.

Рис. 10.9. Обратные клапаны:

а - подъемный; б - поворотный;

1 - крышка корпуса; 2 - корпус; 3 - тарелка (захлопка); 4 - седло; стрелками показано направление движения потока

При автоматизации котельных установок для регулирования подачи питательной воды в котел используют регулирующие кла­паны. Они бывают одно- и двухседельные. В двухседельном регули­рующем клапане (рис. 10.10) тарелки 1 разгружены и для их пере­мещения требуется небольшое усилие.

Расход подаваемой воды регулируется путем вертикального пе­ремещения шпинделя 2, связанного с внутренним 3 и наружным 4 рычагами. На конце наружного рычага установлен противовес — груз 6. Исполнительный механизм регулятора с помощью тяги 5 связан с наружным рычагом питательного клапана.

Рис. 10.10. Двухседельный регулирующий клапан:

1 - тарелка; 2 - шпиндель; 3, 4 - внутренний и наружный рычаги; 5 - тяга к

ручному или автоматическому дистанционному управлению; 6 - груз; стрелками

показано направление движения потока

3.6 Водоуказательные приборы.

Для определения уровня воды в барабане котла применяются водоуказательные стекла. На рис. 10.11 приведен водоуказательный прибор, имеющий плоское стекло 3 с гладкой смотровой поверх­ностью и призматическими рисками на противоположной поверх­ности. Стекло, вставленное в специальную металлическую рамку 2, соединено стальными трубками с паровым и водяным простран­ствами барабана. На трубках установлены три крана 1, 4, 5, позво­ляющие при продувке водоуказательного прибора соединить стек­ло соответственно с паровым и водяным пространствами бараба­на, а также с атмосферой.

На всех водоуказательных приборах против допустимых нижне­го и верхнего уровней воды в барабане котла устанавливают не­подвижные указатели.

Высота прозрачного элемента каждого указателя уровня воды должна превышать допустимые пределы уровня воды, но не менее чем на 25 мм с каждой стороны.

Указатели уровня воды прямого действия должны устанавли­ваться вертикально или с наклоном вперед под углом не более 30" и должны быть расположены и освещены так, чтобы уровень воды был хорошо виден с рабочего места оператора.

Н а паровых котлах с высоко расположенными водоуказательными приборами (более 6 м от пола котельной), когда затруднитель­но или даже невозможно наблюдение за уровнем воды в водоуказательном стекле, применяют снижен­ные указатели уровня. На них должны быть нанесены низший и высший до­пустимые уровни по водоуказательному стеклу, которое установлено на этом же котле.

Исправность сниженных указателей уровня проверяется сверкой с показа­ниями водоуказательных стекол прямо­го действия.

Рис. 10.11. Водоуказательный прибор с одним плоским стеклом: а — обший вид прибора:

1 — паровой кран; 2 —рамка; 3 — плоское стекло; 4 — водяной кран; 5 — продувочный кран; 6 — стекло

Лекция №11 (2 часа)

Тема: «Основные материалы и строительные конструкции. Абразивный износ, коррозия, загрязнение и очистка поверхности нагрева»

1 Вопросы лекции:

1.1 Основные материалы и строительные конструкции.

1.2 Обмуровочные материалы.

1.3 Теплоизоляционные материалы.

1.4 Фундаменты и каркасы.

1.5 Обмуровка.

1.6 Гарнитура.

1.7 Абразивный износ поверхности нагрева.

1.8 Коррозия поверхности нагрева.

1.9 Коррозия металла внутренних поверхностей нагрева.

2 Литература.

2.1 Основная

2.1.1 Амерханов Р.А., Бессараб А.С., Драгонов Б.Х., Рудобашта С.П., Шмшко Г.Г. Теплоэнергетические установки и системы сельского хозяйства/ Под ред. Б.Х. Драганова. – М.: Колос-Пресс, 2002. – 424 с.: ил. – (Учебники и учебные пособия для студентов высш. учеб. заведений).

2.1.2 Фокин В.М. Теплогенерирующие установки систем теплоснабжения. М.: «Издательство Машиностроение-1», 2006. 240 с.

2.2 Дополнительная

2.2.1 Соколов Б.А. Котельные установки и их эксплуатация. – 2-е изд., испр. М.: Издательский центр «Академия», 2007. – 423 с.

2.2.2 Белоусов В.Н., Смородин С.Н., Смирнова О.С. Топливо и теория горения. Ч.I. Топливо: учебное пособие/ СПбГТУРП. – СПб., 2011. -84 с.: ил.15.

2.2.3. Эстеркин, Р.И. Промышленные парогенерирующие установки. – Л.: Энергия. Ленингр. отд-ние, 1980. – 400 с.

3 Краткое содержание вопросов

3.1 Основные материалы и строительные конструкции.

Поверхности нагрева парогенераторов и водогрейных котлов, выпол­ненные из металла, находятся под воздействием высоких температур, меха­нических напряжений и агрессивной среды. В результате тяжелых условий работы металла парогенераторов и водогрейных котлов и особенно металла поверхностей нагрева, могут возникать явления ползучести, коррозии, изме­нения структуры и механических свойств.

При изготовлении деталей парогенераторов и в процессе эксплуатации в них возникают внутренние напряжения. Возникновение внутренних напря­жений обусловлено неравномерным распределением пластических деформа­ций, которые могут вызываться неоднородной структурой металла, неравно­мерным нагревом и охлаждением, влиянием внешней нагрузки. Внутренние напряжения условно разделяют на остаточные и температурные. Остаточные напряжения появляются в процессе изготовления или монтажа (сварка, валь­цовка листов или развальцовка труб, неправильная термическая обработка). Температурные напряжения возникают в толще металла при неравномерном обогреве деталей. Весьма значительные температурные напряжения возни­кают в трубах экранных и конвективных поверхностей нагрева. Это обуслов­лено значительной тепловой нагрузкой и высокой температурой наружной стенки труб. С увеличением тепловой нагрузки и толщины стенки труб тем­пературные напряжения возрастают.

Основными металлами, применяемыми при изготовлении элементов парогенераторов и водогрейных котлов, а также их топочных устройств, яв­ляются сталь и чугун.

В котлостроении применяют углеродистые и легированные стали, т. е. такие, в которые для улучшения механических и физико-химических свойств добавлены другие металлы. Углеродистые стали более дешевы, чем легиро­ванные, и поэтому широко применяются. Углеродистые стали в зависимости от содержания вредных примесей, способа выплавки и степени однородности свойств разделяются на стали обыкновенного качества и стали качественные.

Легированные стали разделяются на низколегированные (до 3,5-4% ле­гирующих элементов), среднелегированные (4-10% легирующих элементов) и высоколегированные (свыше 10% легирующих элементов). В качестве при­садок применяют молибден, никель, ванадий, вольфрам, алюминий, марга­нец, кремний, ниобий, бор, кобальт. Маркировка легированных сталей про­изводится цифрами и буквами. Содержащиеся в стали легирующие элементы обозначаются русскими буквами: Г - марганец, С - кремний, X - хром, Н - никель, М-молибден, В - вольфрам, Ф - ванадий, Т - титан, Ю - алюминий, Б - ниобий, Р - бор. Первые две цифры перед буквами соответствуют сред­нему содержанию углерода в сотых долях процента. Цифры, стоящие после букв, обозначают содержание легирующего элемента в стали в целых про­центах. Если содержание легирующего элемента меньше 1%, цифры после букв не ставятся. Например, обозначение З0ХМ - низколегированная хромо- молибденовая сталь со средним содержанием углерода 0,30%, хрома менее 1% и молибдена менее 1%. Обозначение 12Х2МВ- низколегированная сталь со средним содержанием углерода 0,12%, хрома 2%, молибдена менее 1%, вольфрама менее 1%.

Трубы поверхности нагрева, работающие при температуре стенки, не большей 500° С, обычно изготовляют из углеродистой стали марки 20, у ко­торой верхний предел содержания углерода составляет 0,24%. Для работы при более высоких температурах применяются трубы из легированной стали. Такие трубы могут применяться и для агрегатов, работающих при низких давлениях и температурах, но на агрессивных продуктах сгорания, вызы­вающих коррозию.

При изготовлении паропроводов трубы из углеродистой стали могут применяться только при температурах, не больших 450° С. Это требование обусловлено тем, что при разрушении паропровода последствия могут быть более тяжелыми, чем при разрушении трубы пароперегревателя или экран­ной и конвективной поверхности нагрева.

При изготовлении барабанов парогенераторов применяют листовую сталь и поковки. Барабаны котла, чаще всего вынесенные из зоны обогрева продуктами сгорания, могут изготовляться из углеродистой стали. Однако по технико-экономическим соображениям их делают иногда из легированных сталей.

Так, например, температура стенки барабана парогенератора высокого давления составляет 320-360 °С и его можно изготовлять из углеродистой стали. Но если барабан изготовить из легированной стали, предел текучести которой на 30-40% выше, чем у углеродистой, то можно значительно умень­шить толщину стенки барабана, что экономически целесообразно.

Чугун в зависимости от физико-механических и специальных свойств разделяется на серый, ковкий, жаростойкий, высокопрочный и т. д. Для труб поверхностей нагрева, коллекторов и камер экономайзеров, установленных на парогенераторах с избыточным давлением, не большим 2,25 МПа, допус­кается применение чугуна марки не ниже СЧ12-28 по ГОСТ 1412-70. Рабо­чее давление в экономайзере принимается на 25% большим рабочего давле­ния в парогенераторе, на котором установлен экономайзер.

3.2 Обмуровочные материалы.

При выполнении обмуровки парогенераторов и водогрейных котлов применяются различные общестроительные, огнеупорные и теплоизоляци­онные материалы. Для правильного конструирования, изготовления и экс­плуатации обмуровки необходимо знать свойства применяемых материалов. Свойства материалов обычно разделяют на две группы: основные и специ­альные. Под основными свойствами понимают такие, которые имеют значе ние для всех случаев применения материала. Специальные свойства материа­ла - это свойства, которые необходимо знать в том или ином частном случае при решении конкретных задач в условиях работы оборудования.

К основным свойствам относятся: физические (плотность, пористость), физико-химические (стойкость к различным средам), механические (проч­ность при сжатии или изгибе, упругость, пластичность, хрупкость).

К специальным свойствам относятся: тепловые (удельная теплоем­кость, теплопроводность, морозостойкость, огнеупорность, шлакоустойчивость и т. д.), особые механические (истираемость, износ, усталость) и свой­ства, характеризующие воздействие воды и продуктов сгорания (водопоглощение, гигроскопичность, газопроницаемость).

Для обмуровочных материалов, применяемых в котлостроении, наи­большее значение имеют следующие свойства: плотность, пористость, проч­ность, упругость, пластичность, хрупкость, жесткость, эластичность, тепло­стойкость, удельная теплоемкость, теплопроводность, температуроустойчивость, огнеупорность, термостойкость, шлакоустойчивость, газопроницае­мость.

Под теплостойкостью материала понимают его способность выдержи­вать резкие колебания температуры без существенного изменения структуры. Теплостойкость выражается числом теплосмен, т. е. последовательных быст­рых нагревов и охлаждений, которые материал выдерживает без остаточных деформаций. Изделия из рыхлых пористых материалов обладают высокой теплостойкостью, так как возникающие напряжения компенсируются упру­гостью материала.

Температуроустойчивостью называют способность материала сохра­нять свои свойства без существенных изменений при нагреве до определен­ной температуры. Эта температура характеризует область возможного при­менения материала.

Огнеупорностью называют способность материала сохранять свои ме­ханические и физические свойства при длительном воздействии температур выше 1580° С. По огнеупорности различают: изделия огнеупорные (от 1580 до 1770°С); высокоогнеупорные (от 1770 до 2000°С); высшей огнеупорности (выше 2000° С).

Термостойкостью называют способность огнеупорного материала противостоять растрескиванию при возникновении температурных напряже­ний. Растрескивание наблюдается при резком изменении температур и не­равномерном нагреве отдельных участков, одностороннем нагреве или охла­ждении обмуровки, различных коэффициентах расширения изделия (напри­мер, огнеупорного кирпича и шлаковых отложений). При изменении темпе­ратуры в обмуровке дополнительно к срезывающим напряжениям возникают сжимающие и растягивающие напряжения. Если эти напряжения превысят сопротивление материала разрыву или срезу, происходит растрескивание ма­териала.

Шлакоустойчивостью принято называть способность материала про­тивостоять разрушающему химическому воздействию шлаков. Шлакоустойчивость характеризуют потерей массы материала при воздействии на него шлака в определенных условиях. Шлакоустойчивостью определяется долго­вечность обмуровки.

Газопроницаемостью называют свойство материала пропускать сквозь себя продукты сгорания или воздух. Газопроницаемость характеризу­ют коэффициентом газопроницаемости, под которым понимают количество газа (кг), проходящего в 1 ч сквозь слой материала толщиной 1 м при разно­сти давлений 10 Па.

При выполнении обмуровки парогенераторов и водогрейных котлов применяются разнообразные строительные материалы: песок, строительная известь, глиняный кирпич, цемент, каустический магнезит и др.

Огнеупорные материалы используются главным образом для изготов­ления искусственных изделий: фасонного или нормального огнеупорного кирпича. Из различных огнеупорных материалов наибольшее применение в котельных установках имеют: шамотные, хромитовые, хромомагнезитовые, карборундовые.

Шамотные огнеупорные материалы состоят из кремнезема, содержание которого изменяется от 90 до 0%, и окиси алюминия, содержание которой изменяется от 10 до 100%. В зависимости от содержания компонентов ша­мотные огнеупорные материалы разделяются на следующие виды: полукис­лые кварцево-каолиновые, шамотноглинистые, шамотнокаолиновые и вы­сокоглиноземистые.

Для обмуровки топок при сжигании газа и торфа применяются огне­упорные шамотные полукислые изделия. Они состоят из смеси каолина и кварца или глины и кварца при содержании кремнезема не менее 65%. Ос­новным свойством этих изделий является высокая механическая прочность и постоянство объема при высоких температурах. Размягчение изделий, нахо­дящихся под нагрузкой, наступает при температурах 1300-1400 °С. При об­муровке газоходов парогенераторов могут применяться легковесные шамот­ные изделия, имеющие предельную температуру 1150-1250° С.

При выполнении обмуровочных работ пользуются различными рас­творными смесями. Растворная смесь состоит из вяжущего вещества, мелких заполнителей и воды. В зависимости от назначения различают следующие растворы: для кирпичной или каменной кладки; специальные; для заполне­ния швов при укладке кирпича или камня; для штукатурок и обмазок.

Огнеупорные растворы относятся к специальным и применяются при выполнении кладки из огнеупорного кирпича или фасонных изделий. Для укладки изделий из шамота применяются шамотные растворы, состоящие из молотого шамота и огнеупорной глины. Порошок из молотого шамота, огне­упорной глины с различными добавками носит название «мертель».

В последнее время многие элементы обмуровки выполняются из жаро­упорных бетонов. В состав бетона входят заполнители, тонкомолотые добав­ки и вяжущие вещества. В качестве заполнителей применяется шамотная ще­бенка или хромитовый железняк. Хромитовый железняк представляет собой руду с содержанием окиси хрома не ниже 38%. Кроме шамотной щебенки может применяться тонкомолотый шамот.

Для защиты отдельных элементов парогенераторов (барабанов, коллек­торов экранов, выступающих в топочную камеру, опорных рам трубчатых воздухоподогревателей и др.) от воздействия высоких температур продуктов сгорания применяются огнеупорные массы, наносимые на эти элементы. Ог­неупорные массы, наносимые механизированным способом, называются тор­кретными, а вручную - набивными. Для целей торкретирования обычно при­меняют бетонные смеси, приготовленные на связке из портландцемента с до­бавлением огнеупорной глины и жидкого стекла. Для шамотных набивных масс используется шамотный щебень, шамотный порошок и огнеупорная глина, которые затворяются на жидком стекле.

Для уменьшения газопроницаемости обмуровочной конструкции при­меняются различные обмазки и штукатурки. Общая толщина слоя обмазки обычно составляет 5-7 мм. Общий слой штукатурки обычно составляет не более 20 мм.

3.3 Теплоизоляционные материалы.

Теплоизоляционные материалы и изделия применяются в котлостроении для изоляции горячих поверхностей оборудования и при выполнении обмуровок, имеющих температуру до 900 °С.

Теплоизоляционные материалы должны иметь низкий коэффициент теплопроводности, низкую удельную теплоемкость, небольшую объемную массу, обладать достаточной механической прочностью и необходимой теп­лостойкостью, допускать возможность обработки и не вызывать коррозии металлов. Материалы, применяемые для тепловой изоляции, должны иметь пористое строение, так как воздух в состоянии покоя имеет наиболее низкий коэффициент теплопроводности.

В зависимости от происхождения теплоизоляционные материалы бы­вают органические и неорганические. Органические материалы имеют малую объемную массу и дешевы, но не выдерживают воздействия высоких темпе­ратур и поэтому применяются для изоляции поверхностей с температурой не более 100° С. Неорганические материалы выдерживают более высокие тем­пературы, не горят, не тлеют и не гниют.

Теплоизоляционные материалы могут применяться в виде сыпучих масс с добавкой и без добавки связывающих веществ, а также в виде штуч­ных изделий (кирпичи, плиты, листы, рулоны, маты, матрацы, скорлупы и т. д.). Наиболее широко применяются: диатомит, трепел, асбест, асбестодиатомитовые и магнезиальные материалы.

Диатомиты представляют собой осадочные горные породы и состоят в основном из аморфного кремнезема. С увеличением примесей температурная устойчивость диатомитов уменьшается. Диатомиты могут применяться для температур до 900 °С.

Асбест представляет собой минерал, имеющий волокнистую структуру и способный расщепляться на отдельные эластичные волокна. Он выдержи­вает нагрев до 600 °С, не изменяя своих свойств. Для изоляции используется низкосортный асбест, содержащий в основном короткие волокна, а также ас­бест, получаемый в виде отходов от других производств. Для изоляции горя­чих поверхностей в чистом виде асбест не применяется. Чаще применяются смешанные формованные изделия (асбесто-магнезиальные, асбестодиатомитовые и др.). асбестовые сыпучие массы, мастичные и изоляционные цемен­ты, различные смеси асбеста с минеральной ватой, органическим волокном и др.

Для изоляции наиболее часто применяется асбестовая ткань, асбесто­вый картон, асбестовая бумага, асбестовый шнур.

Из различных сыпучих теплоизоляционных материалов наиболее часто применяется вспученный перлит, вспученный вермикулит, совелитовый по­рошок, молотый диатомит, асбозурит, асботермит и др. В результате обжига перлита и последующей сортировки по фракциям получается вспученный перлитовый песок. Он используется как теплоизоляционный материал, как заполнитель и для засыпки в различных конструкциях обмуровки. Вспучен­ный вермикулит получается в результате обжига природных гидратированных слюд. Из вермикулита изготовляют различные теплоизоляционные изде­лия, а также применяют его для засыпки при температурах изолируемой по­верхности до 1100°С.

В настоящее время в качестве теплоизоляционного материала широко применяют совелит, представляющий собой смесь углекислых солей магния, кальция и распушенного асбеста. Исходным сырьем для изготовления сове- лита является доломит. Температура изолируемой поверхности при исполь­зовании совелита не должна превышать 500° С.

Теплоизоляционный материал, состоящий из стекловидных волокон, называется минеральной ватой. Минеральная вата получается расплавлением горных пород, шлака или стекла. Теплоизоляционные свойства минеральной ваты зависят от толщины волокон. Из минеральной ваты изготовляют войлок на битумной связке и синтетических смолах, маты, асбестоминераловатные плиты, формованные изделия и др. Предельная температура, при которой до­пустимо применение монтажных минераловатных матов, составляет 500° С.

3.4 Фундаменты и каркасы.

Фундамент воспринимает массу парогенератора или водогрейного кот­ла, его обмуровки, каркаса и передает ее на грунт. Опорная площадь фунда­мента определяется из условия допустимого давления на основание и зависит от характера грунта. Фундамент парогенератора или водогрейного котла обычно не связывают с фундаментом здания, чтобы каждый из них имел не­зависимую осадку. Глубина закладки фундамента выбирается с таким расче­том, чтобы обеспечить его устойчивость и минимальную осадку.

Высота фундамента может быть различной. Для парогенераторов гори­зонтальной ориентации фундамент чаще всего доводят до уровня земли. Для парогенераторов вертикальной ориентации - чаще всего до уровня второго этажа (площадка обслуживания). Выступающая из земли до второго этажа часть фундамента выполняется в виде рамной железобетонной конструкции. Под парогенератором размещают тягодутьевые устройства, газоходы и сис­тему шлакозолоудаления.

Каркасом называют металлическую конструкцию, предназначенную для поддержания барабана и трубной системы с водой, а иногда и обмуровки парогенератора и для передачи их массы на фундамент. В настоящее время чаще всего применяют опорные (несущие) и обвязочные каркасы. Парогене­раторы и водогрейные котлы малой мощности обычно имеют обвязочные каркасы, служащие для укрепления обмуровки, гарнитуры и других деталей. Масса металлической части парогенератора или водогрейного котла через специальные стойки или рамы, а также обмуровки передается непосредст­венно на фундамент. Парогенераторы вертикальной ориентации большой мощности обычно имеют несущий каркас, разделенный на несколько частей, относящихся к топке, конвективной поверхности нагрева хвостовым поверх­ностям нагрева. Каждая из частей представляет собой металлическую конст­рукцию опирающуюся на фундамент и жестко связанную с другими частями.

3.5 Обмуровка.

Обмуровка парогенератора и водогрейного котла служит для огражде­ния топочной камеры и газоходов от окружающей среды. Обмуровка пароге­нераторов и водогрейных котлов работает при достаточно высоких темпера­турах и резком их изменении, а также под химическим воздействием продук­тов сгорания, золы и шлаков.

Конструкция обмуровки должна обеспечивать минимальные потери тепла в окружающую среду, быть плотной, противостоять длительному воз­действию высоких температур, химическому воздействию продуктов сгора­ния, золы и шлаков, быть механически прочной, легкой, простой, дешевой и доступной для ремонта, способствовать выполнению блочного монтажа па­рогенератора или водогрейного котла.

Парогенераторы и водогрейные котлы имеют довольно разнообразную по конструкции обмуровку. Однако независимо от конструкции агрегата и его мощности ряд узлов и элементов являются общими. К ним относятся: стенки, арки, перекрытия, своды, амбразуры, цоды, зажигательные пояса, места прохода труб через обмуровку и т. д.

Разрушение обмуровки прежде всего зависит от температуры, при ко­торой она работает. С увеличением температур интенсивность разрушения обмуровки возрастает. Чем больше неровностей на обмуровке, обращенной внутрь газохода, и чем толще ее швы, тем больше она изнашивается и исти­рается. Химическое воздействие шлаков приводит к размягчению, оплавле­нию и нарушению структуры обмуровки.

Вертикальные стены обмуровки топочной камеры и газоходов могут выполняться из различных материалов: огнеупорного строительного и теп­лоизоляционного кирпича, огнеупорных, жароупорных и теплоизоляционных бетонов, температуростойкой изоляции и т. д. Обмуровка обычно состоит из двух слоев: внутреннего, обращенного к газоходу, и наружного. Внутренний слой называют футеровкой, а наружный - облицовочным слоем. Футеровка выполняется из огнеупорного материала, а облицовка - из материала с низ­кой теплопроводностью.

3.6 Гарнитура.

Устройства, предназначенные для обслуживания котла и защиты обму­ровки от разрушения при взрыве, называются гарнитурой. Парогенератор и водогрейный котел должен иметь топочные дверцы, лазы и гляделки для просмотра топки во время ее работы, а также взрывные предохранительные клапаны.

Взрывные предохранительные клапаны для защиты обмуровки от раз­рушения устанавливаются на парогенераторах и водогрейных котлах, имею­щих камерные топки и шахтные топки для сжигания торфа, опилок, стружек и других мелких производственных отходов. Клапаны устанавливаются в обмуровке топки, последнего газохода агрегата, экономайзера и золоулови­теля. Допускается не устанавливать взрывные клапаны в обмуровке котлов, имеющих один ход продуктов сгорания, а также в газоходах перед дымосо­сами.

Для парогенераторов производительностью менее 10 т/ч число, разме­щение и размеры предохранительных взрывных клапанов выбираются про­ектной организацией. Обычно выбирают площадь взрывных клапанов для указанных парогенераторов из расчета 250 см площади взрывного клапана на 1 м3 объема топки или газоходов котла.

Для парогенераторов производительностью от 10 до 60 т/ч в верхней части обмуровки над топкой устанавливаются взрывные клапаны площадью не менее 0,2 м2. Не менее двух предохранительных клапанов с общим сече­нием не менее 0,4 м устанавливается на последнем газоходе парогенератора, газоходе водяного экономайзера и газоходе золоуловителя. Клапаны должны быть установлены в таких местах, чтобы при их срабатывании было исклю­чено травмирование обслуживающего персонала.

На парогенераторах и водогрейных котлах, работающих под наддувом, взрывные предохранительные клапаны не устанавливаются.

Лазы в обмуровке предназначены для производства ремонтных работ при остановке парогенератора. Лазы бывают прямоугольной и круглой фор­мы. Прямоугольный лаз должен иметь размеры не менее 350Х450 мм, а круг­лый - иметь диаметр не менее 450 мм. Гляделки обычно выполняются диа­метром от 70 до 100 мм. В парогенераторах и водогрейных котлах, работаю­щих под наддувом, уплотнение лазов и гляделок осуществляется воздухом, имеющим давление, большее, чем в топке или газоходах. Лазы и лючки должны иметь хорошее уплотнение и надежные запоры во избежание само­произвольного открывания.

3.7 Абразивный износ поверхности нагрева.

При сжигании твердого топлива присутствие в продуктах горе­ния золы и несгоревших частиц приводит к абразивному износу труб, стенок газоходов, стоек, опорных балок и подвесок поверх­ностей нагрева.

Абразивный износ происходит по причине того, что при ударе и трении твердых частиц о поверхность стенки труб истираются, и толщина их становится меньше. При сильном износе труб появля­ются свищи или разрывы, что вызывает необходимость останова котла. Абразивный износ определяется выходом золы и несгорев­ших частиц топлива, скоростью движения газового потока, исти­рающими свойствами уноса, формой и размерами золовых час­тиц, износоустойчивостью металла труб, конструктивными харак­теристиками поверхности нагрева, равномерностью распределе­ния золы и скорости газового потока по сечению газоходов и др.

Наибольшее влияние на износ оказывает скорость газового по­тока. При сжигании топливе высокоабразивной золой (например, экибастузский и подмосковный угли) скорость газов в поверхно­стях нагрева ограничивают величиной 6...8 м/с, в то время как для топлив с низкой абразивностью она составляет 10... 12 м/с.

Абразивные свойства золы и несгоревших частиц топлива в зна­чительной степени определяются формой частиц. Например, легко­плавкие зольные частицы оплавляются и меньше истирают трубы, в то время как частицы тугоплавкой золы и несгоревшего топлива имеют шероховатую поверхность с острыми кромками, что повы­шает их абразивные свойства. Поэтому в качестве одного из мето­дов борьбы с износом рассматривается переход на жидкое шлакоудаление, при котором золовые частицы при оплавлении преобретают сферическую форму. При этом также повышается доля золы, удаляемой из топки в виде шлака, и уменьшается концентрация золы в газовом потоке, что приводит к снижению износа труб.

Увеличенный износ труб обычно наблюдается в области пово­ротов газового потока, так как при этом происходит перераспре­деление масс золы и газов по сечению газоходов, возрастает не­равномерность их скоростей и концентраций, в зоне их повышен­ных значений резко возрастает износ труб. Поэтому целесообразно трубы в зоне поворотов потока защитить от износа. Для этого в местах наиболее интенсивного износа на трубах устанавливают угол­ки и накладки на сгибах змеевиков и приваривают прутки на пря­мых участках труб. В трубчатых воздухонагревателях во входных уча­стках, где имеет место наибольший износ, устанавливают вставки длиной 150...200 мм.

Износ в определенной степени зависит также от работы пы-лесистем и метода сжигания топлива — например, при увеличе­нии крупности частиц (при открытии створок сепараторов, уве­личении доли сушильного агента в гравитационных сепараторах) или ухудшении процесса горения, при котором возрастают недо­жог, размер золовых частиц и, как следствие, износ.

3.8 Коррозия поверхности нагрева.

Коррозия - разрушение металла труб в результате химиче­ского или электрохимического воздействия омывающей среды. Раз­личают высокотемпературную и низкотемпературную коррозию по­верхности нагрева. В результате воздействия раскаленных продук­тов горения на поверхности металла образуется оксидная пленка. В некотором диапазоне температур эта пленка прочно скреплена с металлом и является плотной. Однако при определенной для каж­дого металла температуре плотность оксидной пленки резко пада­ет и кислород среды беспрепятственно проникает к чистому ме­таллу, окисляя его. Этот процесс носит название — окалино-образование.

Наиболее интенсивно коррозионные процессы протекают при наличии сернистых соединений в продуктах горения. В области высоких температур при соприкосновении газов с горячими по­верхностями нагрева, при наличии локальных зон с избытком кислорода имеет место образование SO3 из SO2, так как оксидная пленка окалины Fe2O3, а также зола являются катализаторами этого процесса. При наличии оксидов серы в газах происходит их соединение со щелочными компонентами золы с образованием сульфатных соединений типа K3Fe(SO4)2 или Na3Fe(SO4)2, разру­шающе воздействующих на защитную пленку окалины. Наиболее подвержены высокотемпературной газовой коррозии труб­ки выходных ступеней пароперегревателя, имеющих наибольшую температуру металлических стенок.

Наличие в золе топлива оксида ванадия V2O5 (пентаоксида диванадия) также усиливает высокотемпературную газовую корро­зию, в результате растворяющего его действия на защитные плен­ки окалины.

Ванадиевая и сульфатная коррозия может быть уменьшена путем снижения содержания свободного кислорода что достигается, например, сжиганием мазута в условиях с малым коэффициентом избытка воздуха.

Низкотемпературная коррозия вызвана конденсацией водяных паров продуктов горения на стенках труб. Температура, при которой на трубах отмечается появление конденсированной жидкой пленки, называется температурой точки росы ды­мовых газов. Температура точки росы чистых водяных паров неве­лика и не превышает 60 °С даже для таких влажных топлив, как торф. Повреждения в этом случае имеют характер кислородной коррозии. Благодаря легкому доступу кислорода через тонкую пленку воды, скорость коррозии становится достаточно большой.

При наличии в продуктах горения сернистых соединений SO2, и SO3 температура точки росы существенно повышается и может до­стигать 140...160°С и даже выше. Серный ангидрид SO3 обладает способностью соединяться с парами воды и образовывать пары сер­ной кислоты. Далее при омывании продуктами горения низкотемпе­ратурных поверхностей нагрева происходит конденсация серной кислоты на более холодной, чем газы, металлической стенке, т.е. в результате создаются условия для интенсивного разрушения ме­талла и образования коррозии под действием серной кислоты. Кор­розионный процесс в данном случае является электро­химическим, причем жидкая пленка играет роль электролита.

При сжигании топлива содержащаяся в нем сера преимущест­венно окисляется в сернистый ангидрид SO2. Образование серного ангидрида SO3, происходит за счет доокисления SO2 по реакции

2SO2 + О2 → 2SO3.

Для протекания данной реакции важное значение имеют ката­лизаторы, в роли которых выступают оксиды железа, ванадия и т.д. Окисление SO2 до SO3 происходит лишь при наличии в про­дуктах горения свободного кислорода. Следовательно, снижением избытка воздуха можно уменьшить выход серного ангидрида. Как установлено, при коэффициенте избытка воздуха α = 1,02... 1,03 серный ангидрид вообще не образуется.

Наиболее активно низкотемпературная коррозия происходит в воздушных подогревателях, в которых наблюдаются наиболее низ­кие температуры греющего и нагреваемого теплоносителя. Для предотвращения коррозии воздухонагревателя широко использу­ется метод повышения температуры поступающего в него воздуха путем рециркуляции горячего воздуха или предварительного подогрева воздуха в паровых калориферах.

На рис 11.1, а и б показаны возможные схемы повышения тем­пературы поступающего холодного воздуха ХВ путем рециркуля­ции горячего воздуха ГВ. Рециркуляция воздуха снижает темпера­турный напор в воздухоподогревателе, повышает температуру ухо­дящих газов УГ и расход электроэнергии на дутье.

На рис. 11.1, в приведена схема подогрева поступающего в воз­духонагреватель воздуха в паровом калорифере, установленном меж­ду напорной стороной дутьевого вентилятора и входной ступенью воздухоподогревателя. Калорифер представляет собой трубчатый теплообменник, внутри которого проходит пар при температуре около 120°С. Снаружи трубы омываются воздухом.

Рис. 11.1. Схемы повышения температуры воздуха, поступающего в воздухоподогреватель:

а — с применением рециркуляции воздуха и регулированием шибером на отводе горячего воздуха: б — с применением рециркуляции горячего воздуха специаль­ным вентилятором; в — с паровым калорифером; 1 — короб рециркуляции; 2 — шибер; 3 — дутьевой вентилятор: 4 — вентилятор подачи горячего воздуха; 5 — паровой калорифер; ПГ — продукты горения; УГ — уходящие газы; ГВ — горячий воздух: ХВ — холодный воздух

В последние годы большое внимание уделяется разработке по­крытий и изготовлению поверхностей нагрева из коррозионно-стойких материалов. Одним из способов защиты от коррозии явля­ется покрытие кислотостойкой эмалью металлических поверхно­стей нагрева. С целью защиты от низкотемпературной сернокис­лотной коррозии и для низкотемпературных поверхностей нагрева котла применяют воздухонагреватели со стеклянными трубами.

3.9 Коррозия металла внутренних поверхностей нагрева.

Под воздействием пара, воды, пароводяной смеси на внутрен­нюю поверхность труб металл труб корродирует. По виду коррози­онные разрушения весьма разнообразны. Принято разделять кор­розию на сплошную (общую) и местную.

Сплошная коррозия (рис. 11.2, а, б, в) распространяется на всей поверхности, и металл разрушается в глубину более или менее равномерно. Неравномерность ее развития проявляется либо в не­которых колебаниях глубины сплошного повреждения, либо в из­бирательном удалении из сплава какого-либо компонента.

Местная коррозия охватывает лишь отдельные участки по­верхности, по сравнению с которыми остальная поверхность ме­талла не затрагивается повреждением этого вида. Выделяют следу­ющие основные виды местной коррозии:

  • коррозия пятнами (рис. 11.2, г) — местная коррозия в виде отдельных пятен относительно больших размеров по площади, но небольшой глубины;

  • язвенная коррозия (рис. 11.2, д) — коррозия островными участками меньших размеров, чем при коррозии пятнами, но значительно большей глубины;

  • точечная коррозия (рис. 11.2, ё) — местная коррозия в виде точечных поражений;

  • межкристаллитная коррозия (рис. 11.2, ж) — местная коррозия, распространяющаяся по границам кристаллитов (зерен) металла;

  • транскристаллитная коррозия (рис. 11.2. з) — коррозия, при которой трещина может распространяться не только по границам зерен, но и перерезать тело кристаллита.

Рис. 11.2. Типы коррозионных разрушений:

а — сплошная равномерная коррозия; 6— сплошная неравномерная коррозия;

в — сплошная избирательная коррозия: г— д — местная коррозия (г — пятнами: д

язвенная: е — точечная; ж — межкристаллитная; з — транскристаллитная)

При местной коррозии масса разрушившегося металла, как пра­ пра­вило, меньше, чем при сплошной, т.е. общей, коррозии. Вместе с тем местная коррозия раньше выводит из строя элементы обору­дования, работающего под давлением.

По механизму процесса выделяют два типа коррозии: химиче­скую и электрохимическую. Последняя наряду с химическим пре вращением сопровождается возникновением электрического тока. По отношению к воде наибольшее значение имеет химическая коррозия металлов с образованием кислородных соединений. При окислении чистого железа в зависимости от условий могут образо­ваться оксид железа (II) FeO, оксид железа (III) Fe2O3 и оксид железа (II) и (III) Fe3O4 (магнетит) в виде защитной оксидной пленки по следующим реакциям:

2Fe + О2 <=> 2FeO; 4Fe + ЗО2 <=> 2Fe2O3; 3Fe + 2О2 <=> Fe3O4.

Химическую коррозию, протекающую в газовых средах при высоких температурах, называют обычно газовой коррозией. В пароводяном цикле ТЭС газовой средой, не содержащей жид­кой фазы, является перегретый пар. В теплоэнергетике процесс газовой коррозии сталей в среде перегретого водяного пара назы­вают также пароводяной коррозией.

Для описания газовой коррозии сталей в перегретом паре ис­пользуют реакцию:

3Fe + 4Н2О → Fe3O4 + 4Н2.

На скорость протекания этой реакции существенное влияние оказывают температура и состав металла. При температурах до 450 °С скорость окисления паром углеродистых сталей невелика, при даль­нейшем повышении температуры скорость окисления, т.е. скорость коррозии, существенно возрастает. Это необходимо учитывать при выборе сталей для пароперегревателей и паропроводов перегрето­го пара. При рабочих температурах 450...585"С для паропроводов рекомендуется применять жаростойкие и жаропрочные стали, хромомолибденовые стали 12X1МФ, 12Х2МФСР, 12Х2МФБ и др., а для изготовления пароперегревателей — стали аустенитного класса марок Х18Н10Т, Х18Н12Т.

Электрохимическая коррозия металла отличается от хи­мической механизмом протекания. При электрохимической кор­розии можно выделить два самостоятельных процесса — анодный и катодный. Анодный процесс — это переход металла в раствор в виде гидратированных ионов. Катодный процесс — это уда­ление из металла электронов, появившихся в избытке в результате анодного процесса.

На скорость электрохимической коррозии оказывают влияние многие факторы. К внутренним факторам относятся свойства ме­талла, обусловленные структурой сплава, внутренними напряже­ниями, термической и механической обработкой. К внешним фак­торам относятся природа и состав электролита, температура ра­створа, значение рН, скорость движения среды и ее механическое воздействие на металл.

Повреждения и разрушения защитной оксидной пленки созда­ют условия для протекания местной коррозии котельного металла.

К распространенному виду такой коррозии относятся подшламовая коррозия под действием окислителей, межкристаллитная кор­розия, а также коррозионное растрескивание.

Понятие подшламовая коррозия объединяет несколько раз­новидностей коррозии, которые связаны с накоплением на теплопередающей поверхности слоя рыхлых и пористых отложений. В ме­стах скопления отложений в связи с затруднением подвода воды и отвода пузырьков газа концентрация примесей в растворе, на­ходящемся в толще отложений, становится существенно более высокой, чем в хорошо перемешиваемой котловой воде. Под­шламовая коррозия, связанная с образованием концентриро­ванных растворов NaOH, получила наименование щелочной коррозии. Концентрированные растворы NaOH при высоких тем­пературах вызывают растворение защитной пленки оксидов же­леза. Оголившийся металл окисляется, однако в присутствии концентрированного раствора щелочи защитная пленка не обра­зуется и незащищенный металл под слоем отложений продолжает корродировать. Этот процесс протекает до тех пор, пока утонче­ние стенки не приведет к образованию сквозного отверстия — свища.

Щелочная коррозия развивается обычно на огневой стороне эк­ранных труб барабанных котлов в местах скопления отложений. Уязвимыми в отношении щелочной коррозии являются также свар­ные швы, на неровностях которых часто скапливаются частицы шлама.

К другому виду подшламовой коррозии относится ракушеч­ная коррозия. Такое название связано со своеобразной формой наростов, образующихся в местах повреждения металла.

Коррозия под действием окислителей имеет вид от­дельных язвин различных размеров. К числу окислителей, которые поступают с питательной водой, относятся растворенный кисло­род, нитрит натрия NaNO2 и нитрат натрия NaNO3.

Межкристаллитная коррозия внешне проявляется раз­витием на поверхности металла трещин. Этот вид коррозии встре­чается в элементах котлов, имеющих зазоры, например, в клепа­ных барабанах, в вальцовочных соединениях. Образование тре­щин по границам зерен является результатом совместного дей­ствия высоких внутренних механических напряжений в металле и щелочного концентрата котловой воды. Концентрированная ще­лочь растворяет скапливающиеся по границам зерен примеси, нарушая тем самым связь между отдельными кристаллитами и уменьшая прочность металла. Высокие растягивающие напряже­ния в металле способствуют проникновению агрессивного ще­лочного раствора к границам зерен. Разновидностью щелочной коррозии является межкристаллитная коррозия — каустическая хрупкость металла.

Лекция №12 (2 часа)

Тема: «Контрольно-измерительные приборы»

1 Вопросы лекции:

1.1 Теплотехнические измерения.

1.2 Измерение температуры.

1.3 Измерение давления и разрежения.

1.4 Измерение расхода твердых, жидких и газообразных веществ.

1.5 Измерение уровня жидкости и твердых сыпучих тел.

1.6 Анализ дымовых газов.

2 Литература.

2.1 Основная

2.1.1 Амерханов Р.А., Бессараб А.С., Драгонов Б.Х., Рудобашта С.П., Шмшко Г.Г. Теплоэнергетические установки и системы сельского хозяйства/ Под ред. Б.Х. Драганова. – М.: Колос-Пресс, 2002. – 424 с.: ил. – (Учебники и учебные пособия для студентов высш. учеб. заведений).

2.1.2 Фокин В.М. Теплогенерирующие установки систем теплоснабжения. М.: «Издательство Машиностроение-1», 2006. 240 с.

2.2 Дополнительная

2.2.1 Соколов Б.А. Котельные установки и их эксплуатация. – 2-е изд., испр. М.: Издательский центр «Академия», 2007. – 423 с.

2.2.2 Белоусов В.Н., Смородин С.Н., Смирнова О.С. Топливо и теория горения. Ч.I. Топливо: учебное пособие/ СПбГТУРП. – СПб., 2011. -84 с.: ил.15.

2.2.3. Эстеркин, Р.И. Промышленные парогенерирующие установки. – Л.: Энергия. Ленингр. отд-ние, 1980. – 400 с.

3 Краткое содержание вопросов

3.1 Теплотехнические измерения.

Измерение – нахождение значения физической величины опытным путем, с помощью специальных технических средств.

Теплотехнические измерения служат для определения многих физических величин, связанных с процессами выработки и потребления тепловой энергии. Они включают определение число чисто тепловых величин (температура, тепловая энергия) и некоторые другие величины (давление, расход, количество, уровень, состав газа, концентрация). В энергетической промышленности теплотехнические измерения используются для повседневного контроля и наблюдения за работой и состоянием установленного на электростанциях оборудования. Большую роль технические измерения играют в устройствах автоматизации электрических станций (автоматическое регулирование и управление, технологическая защита, сигнализация).

Надежность и экономичная эксплуатация современных тепловых электростанций и малых котельных немыслима без применения значительного количества разнообразного по устройству, назначению и принципу действия приборов теплотехнического контроля.

Большинство современных теплотехнических приборов основано на применении электрических принципов измерения неэлектрических величин. Указанный принцип измерения, построенный на количественном соотношении между электрическими и неэлектрическими величинами, повышает точность и надежность измерений, упрощает устройство приборов и обеспечивает возможность передачи информации об измеряемом параметре на большие расстояния. Пневматические измерительные приборы применяют на взрывоопасных объектах.

Широкое применение для теплотехнических измерений получили автоматические электронные измерительные приборы, отличающиеся высокой точностью, чувствительностью и быстродействием.

Существуют следующие измерительные приборы, предназначенные для измерения теплотехнических параметров:

– температуры – термометры, пирометры;

– давления – манометры, вакуумметры, мановакуумметры, напоромеры,

тягомеры, тягонапоромеры и барометры;

– расхода и количества – расходомеры, счетчики;

– уровня жидкости и сыпучих тел – уровнемеры, указатели уровня;

– состав дымовых газов – газоанализаторы;

– качество воды и пара – кондуктометры.

Теплотехнические измерения являются составной частью такой большой науки, как метрология.

3.2 Измерение температуры.

Температура является мерой теплового состояния вещества, т.е. степенью его нагрева.

Измерить температуру любого тела непосредственно, т.е. так, как измеряют такие физические величины, как, например, дли­на, масса, объем, не представляется возможным — в природе не существует эталона или образца единицы этой величины. Опреде­ление температуры вещества проводят путем сравнения посред­ством наблюдения за изменением физических свойств другого, так называемого термометрического вещества, которое при соприкос­новении с нагретым телом вступает с ним через некоторое время в тепловое равновесие.

Такой метод не дает абсолютного значения температуры нагре­той среды, а указывает лишь разность температур относительно исходной температуры термометрического вещества, условно при­нятой за нуль.

При изменении в процессе нагревания внутренней энергии ве­щества меняются практически все его физические свойства, но для измерения температуры выбираются те из них, которые одно­значно меняются с изменением температуры, не подвержены вли­янию других факторов, сравнительно легко поддаются точному измерению. Этим требованиям наиболее полно соответствуют та­кие свойства рабочих веществ, как объемное расширение, изме­нение давления в замкнутом объеме, изменение электрического сопротивления, возникновение термоэлектродвижущей силы и ин­тенсивность излучения. Именно эти свой­ства и положены в основу устройства приборов для измерения температуры.

Термометры расширения. Работа тер­мометров расширения основана на свой­стве тел изменять объем, а следователь­но, и линейные размеры в результате из­менения температуры.

В жидкостных стеклянных термометрах в качестве рабочего вещества применяют ртуть и органические жидкости — этило­вый спирт, толуол, пентан и др.

Наиболее широкое распространение получили ртутные стеклянные термомет­ры. При нормальном абсолютном давле­нии ртуть находится в жидком состоянии при температурах от -39 (точка замерза­ния) до +357 °С (точка кипения). Стеклян­ные термометры с органическими запол­нителями пригодны для измерения тем­ператур в пределах -190... + 100°С.

Верхний предел измерения ртутных термометров, ограничиваемый температу­рой размягчения стеклянной оболочки тер­мометра, достигается при помоши ис­кусственного повышения точки кипения ртути. С этой целью у термометров для измерения высоких т емператур до 500 °С и выше пространство капилляра над рту­тью заполняется инертным газом (азотом) при давлении свыше 2 МПа (20 кгс/см2)

Изготовляют два типа ртутных стеклянных термометров (рис. 12.1): с вложенной шкалой и палочные. Термометр технический с вло­женной шкалой имеет заполненный ртутью резервуар 6, капил­ляр 4, шкалу 3, выполненную из стеклянной пластинки молочно­го цвета, и наружную цилиндрическую оболочку 2, в которой ук­реплены капилляр и шкала.

Лабораторный палочный термометр состоит из резервуара 6, соединенного с толстостенным капилляром 4, имеющим наруж­ный диаметр 6... 8 мм. Шкала термометра нанесена непосредствен­но на наружной поверхности капилляра в виде насечки по стеклу.

Точность показаний ртутного термометра, как и любого изме­рительного прибора, определяющего температуру, зависит от спо­соба его установки. Неправильная установка прибора, приводящая к большой утечке теплоты в окружающую среду, может привести к занижению его показаний на 10... 15 %.

Применяются два способа установки ртутных термометров: в защитных гильзах и без них, т.е. путем непосредственного погру­жения термометра в измеряемую среду.

Наиболее распространенным способом является установка тер­мометра в защитной гильзе (рис. 12.2), предохраняющей его от поломки.

Рис. 12.2. Варианты установки ртутного термометра в защитной гильзе: а — вдоль оси трубопровода; б — наклонно к оси горизонтального трубопровода; в — нормально к оси горизонтального трубопровода; г — на вертикальном трубо­проводе; D — диаметр трубопровода

Рис. 12.1. Типы ртутных термометров:

а — технический с вложенной шкалой; б— лабо­раторный палочный с безнулевой шкалой; 1— пробка, залитая гипсом; 2 — оболочка; 3 — шкага; 4 — капилляр; 5 — нижняя часть термометра; 6 — резервуар; 7, 8 — расширения капилляра; 9 — до­полнительная шкала

Манометрические термометры. Действие манометрических тер­мометров основано на изменении давления жидкости, газа или пара в замкнутом объеме в зависимости от температуры. Указан­ные термометры являются техническими показывающими или са­мопишущими приборами и предназначаются для измерения тем­пературы в пределах от -150 до +600 0С. Класс точности их 1—2,5.

Схема манометрического термометра показана на рис. 12.3. Замк­нутая система прибора, заполненная рабочим веществом, состоит из термобаллона 5, погружаемого в измеряемую среду, трубчатой (манометрической) пружи­ны 2, воздействующей посред­ством тяги 1 на стрелку или пе­ро прибора, и капиллярной труб­ки 3, соединяющей пружину с термобаллоном.

Термобаллон выполняется из стальной или латунной трубки, с одного конца закрытой, а с другого соединенной с капилля­ром посредством объемного шту­цера 4 с сальниковым уплотне­нием и резьбой. Термобаллон ус­танавливается в трубопроводах, баках и т. п.

При нагреве термобаллона увеличение в нем давления рабо­чего вещества передается через капилляр трубчатой пружине и вызывает ее перемещение. Со­единительный капилляр изготов­ляется из медной или стальной трубки с внутренним диаметром

0,2...0.4 мм и толщиной стенки 0,5...2 мм. Снаружи капилляр за-шишен металлической оплеткой. Длина капилляра достигает 60 м.

Газовые манометрические термометры заполняются азотом. Для заполнения жидкостных манометрических термометров применя­ют ртуть, ксилол, толуол при начальном давлении 1,5...2 МПа (15...20кгс/см2).

В парожидкостных манометрических термометрах рабочим ве­ществом служат низкокипяшие органические жидкости: хлорис­тый метил, ацетон, бензол и др.

Рис. 12.3. Схема манометрического термометра:

1 — тяга: 2 — трубчатая пружина; 3 — капиллярная трубка; 4— штуцер с саль­никовым уплотнением; 5 — термобал­лон

Термометры сопротивления. Для измерения температуры широ­кое применение получили термометры сопротивления, основан­ные на изменении электрического сопротивления металлических проводников в зависимости от температуры. Электрическое сопро­тивление металлов при нагревании растет, следовательно, зная зависимость сопротивления проводника от температуры и опреде­ляя это сопротивление при помощи электроизмерительного при­бора, можно судить о величине температуры проводника.

Термометры сопротивления применяются для измерения тем­пературы в диапазоне от -260 до +750 °С (в отдельных случаях до 1000 °С).

Достоинствами термометров сопротивления являются высо­кая точность измерения, легкость осуществления автоматической записи и дистанционной передачи показателей, возможность присоединения к одному вторичному прибору при помощи переклю­чателя нескольких однотипных термометров.

Термометр сопротивления выполняется из тонкой металличе­ской проволоки, намотанной на каркас из электроизоляционного материала (слюды, кварца, пластмассы) и помешенной в метал­лический защитный чехол с головкой для подключения соедини­тельных проводов.

В качестве вторичных приборов, работающих с термометрами сопротивления, применяются уравновешенные и неуравновешен­ные измерительные мосты и логометры.

Стандартные технические термометры сопротивления имеют следующие условные обозначения: платиновые - ТСП, медные – ТСМ.

Рис. 12.4. Платиновый термометр сопротивления типа ТСП-1

а_ - чувствительный элемент; б — внутренняя арматура; в — защитная арматура;

1— выводы; 2— накладки; 3 — серебряная лента: 4— платиновая проволока; 5 — каркас из слюдяной пластинки: 6 — фарфоровые бусы; 7 — оболочка: 8 — вкла­дыш;

9 — головка; 10— штуцер; 11 — защитный чехол

Устройство платинового термометра сопротивления приведено на рис. 12.4. На каркасе из слюдяной пластинки 5, имеюшей по бокам зубчатую насечку, намотана платиновая проволока 4 диа­метром 0,07 мм и длиной около 2 м. К концам платиновой об­мотки припаяны два вывода 1 из серебряной проволоки диамет­ром 1 мм, присоединенные к латунным зажимам в головке 9 тер­мометра. Слюдяная пластинка с обмоткой изолирована с двух сто­рон более широкими слюдяными накладками 2 и связана с ними в общий пакет серебряной лентой 3.

Образованный таким образом чувствительный элемент термо­метра вставлен в плоский алюминиевый вкладыш и вместе с ним заключен в трубчатую оболочку 7 из алюминия. Серебряные выво­ды изолированы фарфоровыми бусами 6. Оболочка с чувствитель­ным элементом помещена в стальной защитный чехол 11 с прива­ренным к нему штуцером 10, предназначенным для установки тер­мометра в трубопроводах и резервуарах. В верхней части защитного чехла закреплена алюминиевая головка 9, внутри которой поме­щен бакелитовый вкладыш с двумя зажимами для присоединения внешних соединительных проводов.

Термоэлектрические пирометры. Действие термоэлектрических пирометров заключается в том, что в замкнутом контуре, состоя­щем из двух разнородных проводников, образующих так называе­мую термопару, непрерывно течет электрический ток, если места спаев этих проводников имеют разную температуру.

Термоэлектрический пирометр (рис. 12.5) состоит из термопа­ры (термоэлектроды А и В) и подключенного к ней соединитель­ными проводами С вторичного электроизмерительного прибора ЭП. Величина термоэлектродвижущей силы (ТЭДС), развиваемой тер­мопарой, зависит от материала термоэлектродов, а также от тем­пературы рабочего 3 и свободных 1, 2 концов термопары.

Рис. 12.5. Схема термоэлектрического пиро­метра:

1, 2 - свободные (холодные) концы термопары; 3 - рабочий конец термопары (горячий спай): А, В - тер­моэлектроды; С - соединительные провода; ЭП - вторичный электроизмерительный прибор; t0 - тем­пература холодных концов термопары;

t - темпе­ратура горячего спая

В качестве термоэлектродных материа­лов для изготовления термопар применя­ются, главным образом, чистые металлы и их сплавы, которые должны удовлетво­рять следующим требованиям:

1) обеспечение при измерениях сравнительно больших ТЭДС;

2) постоянство термоэлектрических свойств независимо от из­менения со временем внутренней структуры и загрязнения поверх­ности;

3) устойчивость против действия высоких температур, окис­ления;

4) хорошая электропроводность;

5) однозначная и по возможности линейная зависимость ТЭДС от температуры;

6) однородность и постоянство состава материала термоэлект­родов для обеспечения взаимозаменяемости термопар.

Наибольшее распространение для промышленных термопар по­лучили материалы: платина, плаинородий, хромель, алюмель, копель.

В табл. 12.1 приведены некото­рые характеристики наиболее рас­пространенных термопар.

Таблица 12.1 Пределы измерения температур термопарами

Наименование термопары

Тип

Градуировка

Пределы изме­рения темпера­тур при длитель­ном измерении, °С

Платинородий-платиновая (10% родия)

Платинородиевая (30 и 6% родия)

Хромель-алюмелевая

Хромель-копелевая

ТПП ТПР

ТХА ТХК

ПП-1

ПР-30/6

ХА

ХК

-20...+1300

+300...+1600

-50...+ 1000

-50...+600

Термопары из драгоценных ме­таллов и сплавов ТПП и ТПР при­меняются главным образом для измерения высокой температуры (выше 1000 °С), так как они обладают большой термостойкостью.

Термопары из драгоценных ме­таллов и сплавов ТПП и ТПР при­меняются главным образом для измерения высокой температуры (выше 1000 °С), так как они обладают большой термостойкостью.

Термоэлектроды термопар из драгоценных металлов изготовля­ются обычно из проволоки диаметром 0,5 мм, а в случае недраго­ценных металлов диаметр проволоки 1,2...3,2 мм.

Рабочий конец термометра из таких термоэлектродов образует­ся сваркой двух концов, а из толстых — их скруткой и сваркой. Иногда для улучшения условий теплопередачи рабочий конец термопары из недрагоценных металлов приваривается ко дну защитного металлического чехла.

Термоэлектроды термопары от спая до зажимов тщательно изо­лируются. В качестве изоляции применяются одно- и двухканальные фарфоровые трубки или бусы, надеваемые на термоэлектроды.

Общий вид термопары приведен на рис. 12.6. Термопара имеет стальной защитный чехол 5, на который насажен подвижный фла­нец 6 со стопорным винтом, служащим для ее закрепления. Рабо­чий конец термопары 7 помешен в фарфоровый стаканчик 8. Оба термоэлектрода изолированы подлине фарфоровыми бусами 9. Головка состоит из литого корпуса 10, крышки / и сальника 2 с уп­лотнением для вывода проводов. Внутри головки расположена ко­лодка 4 с двумя зажимами 3, несущими на себе две пары винтов // и /2 для закрепления термопроводов и соединительных проводов. В качестве электроизмерительных приборов в термоэлектриче­ских пирометрах применяются пирометрические милливольтмет­ры и потенциометры.

Рис. 12.6. Общий вид термопары: