Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
04. макет конспектов лекций.doc
Скачиваний:
3
Добавлен:
01.05.2025
Размер:
22.07 Mб
Скачать

3 Краткое содержание вопросов

3.1 Физико-химические характеристики воды.

Источниками водоснабжения для питания котлов являются пруды, реки, озера, используются также фунтовые или артезиан­ские воды, вода из городского или поселкового водопровода. В со­ставе природных вод имеются механические примеси минераль­ного или органического происхождения, растворенные химиче­ские вещества и газы, поэтому без предварительной очистки при­родные воды непригодны для питания котлов.

Воду, используемую в паровых и водогрейных котлах, в зави­симости от участка технологической цепи, на котором она ис­пользуется, называют по-разному. Так, вода, поступающая в ко­тельную или ТЭЦ от возможных источников водоснабжения, на­зывается исходной, или сырой, водой. Как правило, эта вода требует предварительной химической подготовки перед использо­ванием ее для питания котлов.

Вода, поступающая для питания котлов, называется пита­тельной. Вода, подаваемая для восполнения потерь пара или расходов воды в тепловых сетях, называется подпиточной. Воду, находящуюся в испарительной системе котла, называют котловой.

Пар, получаемый в промышленных котлах, направляют в раз­личные теплоиспользующие устройства, конденсат из которых возвращается неполностью либо он настолько загрязнен, что не может быть непосредственно использован. Кроме того, часть пара и воды при наличии неплотностей теряется. В связи с этим необхо­димо систематически добавлять в тепловые сети некоторое коли­чество воды извне. В водогрейные котлы также приходится добав­лять воду из-за ее утечек в системе теплоснабжения или использо­вания потребителями.

Качество исходной, подпиточной, питательной и котловой воды характеризуется содержанием взвешенных частиц, сухим остатком, общим солесодержанием, жесткостью, щелочностью, содержани­ем кремниевой кислоты, концентрацией водородных ионов и со­держанием коррозионно-активных газов.

К взвешенным веществам относятся механические примеси, уда­ляемые из воды путем фильтрования; содержание взвешенных частиц вычисляют в миллиграммах на килограмм (мг/кг). Общее солесодержание определяется по величине сухого остатка примесей, получающегося после испарения 1 кг профильтро­ванной воды и подсушивания этого осадка при температуре 105 °С. Общее солесодержание измеряется также в мг/кг.

Находящиеся в воде соли обладают той или иной степенью ра­створимости, означающей, что в воде при каждой данной темпе­ратуре без остатка может растворяться определенная максималь­ная масса соли, которую выражают в граммах на литр (г/л). Разли­чают хорошо растворимые (более 10 г вещества в 1 л Н2О). мало­растворимые (от 0,01 до 10 г/л) и практически не растворимые (менее 0,01 г/л) соли. К хорошо растворимым следует отнести соли щелочных металлов, хлориды (СаС12, MgCl2) и т.д. Растворимость солей зависит от температуры.

Жесткость воды обусловлена присутствием в ней солей кальция и магния. Различают общую Жо, карбонатную Жк и некарбонатную Жик жесткость.

Карбонатная жесткость Жк характеризуется содержанием в воде гидрокарбонатов кальция Са(НСО3)2 и гидрокарбонатов маг­ния Mg(HCO3)2. Карбонатная жесткость удаляется нагреванием воды, поэтому ее называют также временной жесткостью. При нагревании воды гидрокарбонаты Са(НСО3)2 и Mg(HCO3)2 посте­пенно переходят в малорастворимую форму солей — карбонаты СаСО3 и MgCO3, выпадающие в виде рыхлых осадков (шлама) и удаляемые при периодической продувке. Уравнения этих реакций следующие:

Количественно карбонатная жесткость равна концентрации ионов Са2+ и Mg2+. которая соответствует удвоенной концентра­ции гидрокарбонат-ионов НСО3.

Некарбонатная жесткость вызвана наличием в воде всех остальных, помимо гидрокарбонатов, солей кальция и магния (на­пример, хлоридов СаСЬ, MgCl2, сульфатов CaSO4, MgSO4, нит­ратов Ca(NO3)3, Mg(NO,)2, различных силикатов и фосфатов каль­ция и магния и т.д.). Некарбонатная жесткость является неустра­нимой, она сохраняется при нагревании и кипячении, поэтому ее называют постоянной жесткостью. Соли постоянной жестко­сти образуют плотные отложения накипи. Количественно некар­бонатная жесткость равна концентрации ионов Са2+ и Mg2+ за вы­четом временной (карбонатной) жесткости. В качестве анионов вы­браны (условно) сульфат-ионы SO4, хотя в воде могут также на­ходиться, как бы по отмечено, хлориды, нитраты, различные си ликаты и фосфаты кальция и магния. Так как некарбонатную же­сткость определяют через содержание CaSO4 и MgSO4, ее называ­ют также сульфатной жесткостью.

Общая жесткость Жо характеризуется суммарным содержани­ем в воде всех солей кальция и магния (хлоридов, сульфатов, гидро­карбонатов, нитратов, силикатов), т.е. складывается из карбонат­ной (временной) и некарбонатной (постоянной) жесткости:

Жо = Жк + Жнк.

Количественно общую жесткость воды характеризуют через сум­марное содержание ионов Са2+ и Mg2+, выраженное в ммоль/кг. По жесткости все природные воды делятся на мягкие (общая же­сткость менее 2 ммоль/кг) и жесткие со средней степенью же­сткости (2... 10 ммоль/кг) и высокой степенью жесткости (более 10 ммоль/кг). Для перевода количества вещества п, моль, в его мас­су m, кг, используют формулу пМ = т, где М — молярная масса конкретного вещества, кг/моль. Для рассматриваемых солей жест­кость соответствует M(Са) = 40,08 кг/моль, M(Mg) = 24,32 кг/моль. Так как в химических процессах вещества реагируют и образуются в эквивалентных количествах, то на практике до сих пор широко используется понятие грамм-эквивалента — количество вещества в граммах, численно равное его химическому эквиваленту. Хими­ческий эквивалент — безразмерная величина, численно равная для водных растворов солей молярной концентрации ионов Са2+ и Mg2+, приходящейся на вдвое большую молярную концентрацию НСО]. Таким образом, если используют единицу измерения жесткости мг-экв/кг (миллиграмм-эквивалент на 1 кг воды), то она соответст­вует содержанию в воде 20,04 мг иона Са2+ или 12,16 мг иона Mg2+.

Щелочность характеризуется наличием в воде щелочных со­единений (NaOH — едкий натр, Na2CO3 — кальцинированная сода. NaHCO3 — гидрокарбонат натрия, Na3PO4 — тринатрий-фосфат и др.).

Общая щелочность Що складывается из суммы Щг (гидратная щелочность), Щ (гидрокарбонатная), Щк (карбонатная), т.е.

Щелочность воды, как и ее кислотность, определяется водо­родным показателем рН. Вода является очень слабым электроли­том, и ее диссоциация происходит по реакции Н2О↔ Н+ + ОН . При температуре 25 0С в чистой воде концентрация ионов водоро­да Сн+ равна концентрации гидроксид-ионов Сон-, и в свою оче­редь они равны: Сн+ = Сон = 10-7 моль/л. Такая среда называется нейтральной. Десятичный логарифм концентрации ионов во­дорода, взятый с обратным знаком, назван водородным по­казателем рН, т.е. рН = -Ig[H+]. Таким образом, для нейтраль­ной среды рН = -lg| 10-7| = 7.

В кислой среде С н+ > Сон- и рН < 7, а в щелочной среде СН+<СОН- и рН > 7.

Окисляемость воды характеризуется наличием в ней органиче­ских соединений. С достаточной степенью точности ее можно оп­ределить также по потере массы сухого остатка, сожженного при 800 0С. Важное значение для характеристики качества воды имеет также наличие кремнийсодержащих ионов. Присутствие растворен­ных в воде газов О2 и СО2 определяет в основном ее коррозионные свойства.

Вода, подготовленная для питания котла, не должна давать от­ложений шлама и накипи, разъедать внутренние стенки труб по­верхностей нагрева, а также вспениваться.

3.2 Влияние качества воды на работу котла.

Наличие примесей в питательной воде приводит к явлениям, существенно усложняющим работу котельного агрегата. В первую очередь следует выделить накипеобразование, загрязнение паро­перегревателей и турбин, внутреннюю коррозию в трубах.

Накипеобразование на внутренней поверхности обогрева­емых труб относится к наиболее нежелательным явлениям. При по­явлении накипи толщиной δН на внутренней поверхности труб повы­шается температура стенки tст на наружной обогреваемой поверх­ности металла по причине низкой теплопроводности накипи λH.

Даже весьма небольшой слой накипи приводит к весьма су­щественному повышению температуры металла труб и их разрыву из-за потери механической прочности, что считается тяжелой ава­рией в котлоагрегате.

Растворение веществ в воде приводит к полной или частичной их диссоциации с образованием соответствующих ионов. Питатель­ная вода содержит в основном следующие ионы: катионы Na+, Са2+. Mg2+ и анионы ОН- , Сl-, SO2- СО2-3, (HSiO3)-. Ион натрия Na+ легко образуется при растворении в воде многих природных со­единений, в их числе соли — хлорид натрия (поваренная соль) NaCl, сульфат натрия (глауберова соль) Na2SO4, карбонат натрия (кальцинированная сода) Na2CO3, гидроксид натрия (каустиче­ская сода, натровый щелок) NaOH и др.

При соприкосновении воды с горячей стенкой трубы в поверх­ностном слое вследствие испарения воды достигается состояние насыщения, и избыток вещества выпадает из раствора в осадок, образуя на стенке трубы твердые и плотные отложения — накипь. Очень твердую накипь дают силикаты CaSiO3, и сульфаты CaSO4 кальция.

Внутренние загрязнения на трубах пароперегревателей и лопат­ках турбин появляются при выносе солей из барабана котла с часточками влаги и вследствие растворимости некоторых солей в паре. Особая роль в загрязнении пароперегревателя и турбин принадле­жит кремнекислотам (их общая формула mSiO2·nH2O). С увеличе­нием давления растворимость в паре кремнекислот возрастает. Поэтому с повышением давления пара более 10 МПа значительно возрастают требования к чистоте воды и пара по их содержанию, например по содержанию ортокремниевой кислоты H4SiO4, моле­кулы которой образуют цепи, давая сначала вязкий осадок в виде геля (со временем формируется пористое вещество — силикагель).

В барабанах котлов и экранных трубах наблюдается щелочная коррозия, определяемая концентрацией щелочи NaOH, достига­ющей опасных значений при выпаривании котловой воды. Осо­бенно активно коррозия протекает под слоем непрочных отложе­ний (накипи и шлама).

Распространенным видом коррозии является кислородная кор­розия. Свободный кислород, содержащийся в воде, электрохими­чески взаимодействует с металлом и вызывает его разрушение. Наиболее подвержены кислородной коррозии внутренние поверх­ности труб экономайзеров.

3.3 Основные нормы качества воды.

Водно-химический режим работы котла должен обеспечивать надежность всей системы, включая питательный тракт, без по­вреждения элементов из-за отложений накипи и шлама, повыше­ния относительной щелочности (т.е. доли свободного едкого натра NaOH в общем солевом составе котловой воды) до опасных пре­делов или коррозии металла.

Все паровые котлы с естественной и многократной принуди­тельной циркуляцией паропроизводительностью 0,7 т/ч и более, все паровые прямоточные котлы, а также все водогрейные котлы должны быть оборудованы установками для докотловой обработки воды. Выбор способа обработки воды для питания котлов осуще­ствляет проектная организация.

На основании теплотехнических испытаний котлов и длитель­ного опыта их эксплуатации установлены нормы качества пита­тельной воды для водотрубных котлов с естественной циркуляцией (табл. 9.1), сетевой и подпиточной воды водогрейных котлов (табл. 9.2).

Качество подпиточной и сетевой воды водогрейных котлов долж­но удовлетворять требованиям, указанным в табл. 9.2.

Нормы качества котловой воды, необходимый режим ее коррекционной обработки, режимы непрерывной и периодической продувок принимаются на основании инструкции предприятия изготовителя котла, типовых инструкций по ведению водно-хи­мического режима и других ведомственных нормативных докумен­тов или на основании результатов теплотехнических испытаний.

Качество пара зависит от его влажности и концентрации за­грязняющих котловую воду веществ. Насыщенный пар должен отвечать нормам, приведенным в табл. 9.3. В паре ограничивается содержание растворимых соединений натрия, а также свободной углекислоты Н2СОЪ которая легко распадается на СО2 и Н2О.

Таблица 9.1 Нормы качества питательной воды водотрубных промышленных паровых котлов

Показатель

Рабочее давление, МПа

0,9

1,4

2,4

4,0

10

Прозрачность по шрифту, см, не менее

30

40

40

40

-

Обшая жесткость, мкг-экв/кг

30/40

15/20

10/15

5/10

1/3

Содержание соеди­нений железа (в перссчете на Fe), мкг/кг

Не нор­миру­ется

300/Не норми­руется

100/200

5/100

20/30

Содержание соедине­ний меди (в пересчете на Си), мкг/кг

Не нормируется

10/Не нормируется

5 5

Содержание раство­ренного кислорода (для котлов с паро­производительностью 2 т/ч и более), мкг/кг

50/100

30/50

20/50

20/50

10/10

Значение рН при 25 °С

8,5... 10,5

9,1±0,1

Содержание нефте­продуктов, мг/кг

5

3

3

0,5

0,3

Примечание. В числителе указаны значения для котлов, работающих на жидком топливе, в знаменателе — на других видах топлива.

Таблица 9.2 Нормы качества сетевой и подпиточной воды водогрейных котлов

Показатель

Система теплоснабжения

открытая

закрытая

Температура сетевой воды, "С

115

150

200

115

150

200

Прозрачность по шрифту, см, не менее

40

40

40

30

30

30

Карбонатная жест­кость, mkг-экв/кг,при рН не более 8,5

800

700

750

600

375

300

800

700

750

600

375

300

Карбонатная жест­кость, мкг-экв/кг, при рН более 8,5

Не допускается

По расчету ГОСТ 108.030.47—81

Содержание раст­воренного кисло­рода, мкг/кг

50

30

20

50

30

20

Содержание соеди­нений железа (в пересчете на Fe), мкг/кг

300

-

200 

250

250

 200

600

 500

500 400

375 300

Значение рН при 25 0С

7...8.5

7... И

Содержание неф­тепродуктов, мг/кг

1,0

Таблица 9.3 Предельные значения содержания примесей в насыщенном паре котлов с естественной циркуляцией

Показатель

Давление в котле, МПа

промышленном

энергетическом

ТЭЦ

кэс

1,4

2,4

4,0

4,0

4,0

Солесодержание (в пере­счете на NaCl), мкг/кг

1000

500

300

300

200

Содержание свободной углекислоты, мкг/ki

20

20

20

20

10

Содержание свободного аммиака, не связанного углекислотой

Не допускается

3.4 Удаление механических примесей и коллоидных веществ из вод.

В природной воде наряду с растворенными могут находиться минеральные и органические примеси, значительно различающи­еся по крупности частиц. Для удаления веществ, находящихся во взвешенном состоянии, используют методы отстаивания, фильт­рования, коагуляции. Отстаивание проводят в отстойниках, длительность процесса зависит от плотности частиц, их размера и формы. Объем отстойника обычно соответствует полуторной или удвоенной часовой производительности. Скорость осаждения мел­ких частиц невелика, и поэтому воду после отстаивания подверга­ют дальнейшему осветлению — фильтрованию.

Фильтрование заключается в пропускании воды через слой мелкозернистого материала (кварцевого песка, мрамора, доломи­та, антрацита) с размером частиц 0,6... 1мм, которым заполняют закрытые напорные фильтры.

Значительно быстрее и полнее процессы отстаивания и фильт­рования протекают при коагуляции, сущность которой за­ключается в укрупнении наиболее мелких коллоидных частиц и выделении их наряду со взвесями в осадок при добавлении к воде специальных реагентов-коагулянтов.

Наиболее эффективными коагулянтами являются соли алюми­ния и железа - сульфат алюминия Al2(SO4)3, сульфат железа FeSO4·7H2O и хлорное железо FeCl3·6H2О.

Доза коагулянта составляет, например, для сульфата алюми­ния 30...150 г коагулянта на 1 м3 воды. Коагуляция протекает наи­более полно при температуре воды 35...40°С. В результате коагуля­ции содержание органических веществ в воде может быть снижено на 60...80%, а кремниевой кислоты — на 25...40%.

Осветлительный фильтр представляет собой цилиндрический металлический резервуар с эллиптическими днищами, в котором на дренажном расширительном устройстве располагается слой фильтрующего материала. Вода после предварительного отстаива­ния и коагуляции или непосредственно в смеси с коагулянтом поступает в верхнюю часть фильтра через дырчатое распредели­тельное устройство. Просачиваясь со скоростью 12...15 м/ч через фильтрующий материал с высотой слоя 800...1200 мм, вода остав­ляет на его наружной поверхности и поверхности фильтра в толще взвешенные вещества и хлопья коагулянта, осветляется, после чего через дренажную систему она отводится в бак. В процессе фильтрации (обычно в течение 5...6 ч) фильтрующий материал загрязня­ется осадком, т.е. требуется его периодическая очистка. Фильтра­цию через зафязненный фильтр приостанавливают и промывают его потоком чистой отфильтрованной воды, направленным снизу вверх. Для улучшения качества промывки фильтрующего материа­ла его «взрыхляют» сжатым воздухом, подаваемым снизу под фильт­рующий материал. Осветлительный фильтр имеет два люка для за­грузки фильтрующего материала, осмотра и ремонта фильтра.

3.5 Основные методы умягчения и обессоливание воды.

Умягчение воды проводят методом осаждения и методом ион­ного обмена. Метод осаждения заключается в том, что присутству­ющие в обрабатываемой воде в растворенном состоянии накипеобразующие катионы (Са2+, Mg2+) в результате химического взаимо­действия их с вводимыми в воду реагентами (известь, сода и т.д.) или в результате термического их разложения образуют новые со­единения, малорастворимые в воде и поэтому выделяющиеся из нее в твердом состоянии. Образованные таким путем вещества уда­ляют затем из воды в процессе отстаивания и фильтрования. При умягчении воды методом, получившим название «содово-извест­ковый», не удается получить достаточно глубокого умягчения воды, поэтому в настоящее время наибольшее распространение получил метод ионного обмена.

Обработка воды методом ионного обмена осуществляется в фильтрах через слой зернистого материала — ионита. В процессе фильтрования ионы солей, содержащихся в воде, заменяются иона­ми, которыми насыщен ионит. В качестве обменных ионов в прак­тике водоподготовки применяются катионы натрия Na+, водорода Н+, аммония NH4+, а также гидроксильные ОН- и хлоридные Cl- анионы.

Если зернистый материал ионита содержит катионы, он называ­ется катионитом, а фильтрация воды через слой катионита — катионированием воды. При содержании в зернистом филь­трующем материале анионов его называют анионитом, а об­работку воды — анионированием.

В зависимости от вида обменного катиона различают Na-катионирование и Н-катионирование.

При Na-катионитовом умягчении воды в результате реакций ионного обмена соли жесткости удаляются из воды, и в умягчен­ную воду переходят соли натрия, обладающие высокой раствори­мостью.

В качестве катионита на установках умягчения воды в настоя­щее время используются относительно дешевые сульфированные угли (сульфоугли) и более дорогие синтетические смолы. Сульфоуголь получают при обработке бурого или каменного угля высоко­концентрированной серной кислотой. Широкое распространение получил катионит КУ-2 на основе полистирольного синтетиче­ского материала.

Так, полная обменная способность сульфоугля составляет 500...600 г-экв/м3, а катионита КУ-2 - 1500...1700 г-экв/м3. Обычно рабочий цикл умягчения в катионитном фильтре продолжают до момента «проскока» в фильтрат солей жесткости, затем фильтра­цию приостанавливают с целью регенерации фильтра.

Катионитный фильтр (рис. 9.1) состоит из цилиндрического корпуса 3 co сферическими днищами. Загрузку катионита в фильтр ведут через верхний люк 4, а выгрузку — через нижний 5. Высота слоя катионита в зависимости от жесткости исходной воды может достигать 3...4 м. На бетонной подушке 7 устанавливается дренаж­ное устройство 6, предназначенное для равномерного распределе­ния воды, проходящей по всему сечению фильтра. Оно состоит из коллекторов и системы труб, к которым приварены патрубки с резьбой. На них навинчиваются пластмассовые либо фарфоровые колпачки с отверстиями или щелями. Для равномерного распреде­ления по поверхности катионита вода подается в фильтр через воронку 1, обращенную широким концом вверх. Регенерирующий раствор поступает в фильтр через кольцевую трубу 2, в которой имеется множество мелких отверстий.

10

Рис. 9.1. Кагионитный фильтр:

1 - воронка; 2 - кольцевая дырчатая трубка; 3 - корпус; 4 - верхний люк;

5 - нижний люк; 6 - дренажное устройство; 7- бетонная подушка;

8 - трубопровод для подачи воды на умягчение или раствора соли на регенера­цию;

9 - катионит; 10 - трубка для отбора проб

Для регенерации фильтра предполагается выполнение следую­щих операций: взрыхление катионита, собственно регенерация и отмывка катионита.

Взрыхление проводят током воды снизу вверх с целью устранения спрес­сованное™ катионита, образовавшей­ся под давлением массы воды при ее фильтровании. Непосредственно ре­генерация заключается в пропуске сверху вниз регенерирующего раство­ра через слой катионита. При Na-катионировании регенерацию проводят 8... 10%-ым раствором поваренной соли NaCl. Ионы Na+, содержащиеся в регенерирующем растворе, вытесняют ионы Са2+ и Mg2+, кото­рые были задержаны в процессе фильтрования. Вытесненные ионы переходят в раствор, а катионит, обогащаясь катионами Na+, вос­станавливает свою обменную способность.

Отмывка катионита заключается в том, что током воды сверху вниз катионит очищается от избытка регенерирующего раствора и от продуктов регенерации, вытесняемых из катионита.

Регенерацию катионитных фильтров в зависимости от качества воды проводят 1—3 раза в сутки. Во время регенерации, которая занимает около 2 ч, воду пропускают через резервный фильтр.

Чистое Na-катионирование применяют только при умягчении воды с небольшой карбонатной жесткостью. Для умягчения воды с большой карбонатной жесткостью применяют совместное Na-H-катионирование.

Под обессоливанием воды понимают удаление из нее ка­тионов и анионов растворенных веществ. Обессоливание воды по методу ионного обмена связано с использованием процесса анио-нирования наряду с рассмотренным ранее катионированием. Анио-ниты представляют собой искусственно приготовленные материалы. Они делятся на слабооснбвные и сильнооснбвные. Слабооснбвные аниониты способны к поглощению анионов только сильных кис­лот (SO2-4 Cl-, NО3-); анионы слабых кислот (HSiO3-, HCO3-) ими практически не задерживаются. Сильнооснбвные аниониты могут извлекать из водных растворов анионы сильных и слабых кислот.

При ионно-обменном способе обессоливания обрабатываемая вода проходит ряд ступеней очистки, каждая из которых предназ­начена для выполнения определенной функции. Число ступеней зависит от степени обессоливания воды. Анионирование может осуществляться при разных значениях рН обрабатываемой воды. Однако наиболее эффективно оно происходит в кислой среде, когда в воде присутствуют ионы водорода. Поэтому для достижения глу­бокого удаления анионов обрабатываемую воду обычно фильтру­ют через Н-катионит, а затем через анионит.

Регенерация анионитовых фильтров проводится фильтровани­ем через слой анионита раствора щелочи NaOH.

На рис. 9.2 приведены две схемы с частичным (а) и глубоким полным (б) обессоливанием: первая находит применение на электростанциях, оборудованных барабанными котлами высокого (10, 14 МПа) давления, вторая является основной для современ­ных блочных электростанций с прямоточными котельными агре­гатами сверхкритического давления. В схеме частичного обессоли­вания (см. рис. 9.3, а) вода поступает в механический фильтр М, затем на катиоиигные (водородные) фильтры первой Н1, и второй Н2 ступеней для удаления катионов (Са2+, Mg2+. Na+, NH4+ и др.), после которых воду направляют в декарбонизатор Д. Из декарбо-низатора вода поступает в анионитный фильтр А2, заряженный сильноосновным анионитом.

Рис. 9.3. Установки с частичным (а) и полным (б) обессоливанием:

М, Н1, Н2 - механический, водородный первой и второй ступеней фильтры;

Д — декарбонизатор; А1, А2 - анионитные фильтры первый и второй; СО2 - удаление газа (диоксида углерода); ФСД - фильтр смешанного действия; Ос - осветлитель

В фильтры Н1 большей частью загружают сульфоуголь СК-1, а в фильтры Н2 - катионит КУ-2. Анионитные фильтры А1, заполняют слабоосновным анионитом АВ-31, а А2 - анионитом АВ-17.

В схеме с полным обессоливанием (см. рис. 9.3, б) вода посту­пает в осветлитель Ос, из которого далее направляется в сборный бак. Из бака воду насосом подают в механический фильтр М, а затем в Н1-катионитный фильтр и декарбонизатор Д.

Из декарбонизатора насосом воду подают в последовательно расположенные слабооенбвный анионитный фильтр А1, Н2-катионитный фильтр и сильнооенбвный анионитный фильтр А2. В дан­ной схеме предусмотрена третья ступень очистки в фильтре сме­шанного действия ФСД, заменяющего соответственно Н3-катионитный и А3-анионитный фильтры.

Лекция №10 (2 часа)

Тема: «Питательные устройства и арматура»

1 Вопросы лекции:

1.1 Центробежные насосы.

1.2 Инжекторы.

1.3 Классификация арматуры котельного агрегата.

1.4 Запорная арматура.

1.5 Предохранительные, обратные и регулирующие клапаны.

1.6 Водоуказательные приборы.

2 Литература.

2.1 Основная

2.1.1 Амерханов Р.А., Бессараб А.С., Драгонов Б.Х., Рудобашта С.П., Шмшко Г.Г. Теплоэнергетические установки и системы сельского хозяйства/ Под ред. Б.Х. Драганова. – М.: Колос-Пресс, 2002. – 424 с.: ил. – (Учебники и учебные пособия для студентов высш. учеб. заведений).

2.1.2 Фокин В.М. Теплогенерирующие установки систем теплоснабжения. М.: «Издательство Машиностроение-1», 2006. 240 с.

2.2 Дополнительная

2.2.1 Соколов Б.А. Котельные установки и их эксплуатация. – 2-е изд., испр. М.: Издательский центр «Академия», 2007. – 423 с.

2.2.2 Белоусов В.Н., Смородин С.Н., Смирнова О.С. Топливо и теория горения. Ч.I. Топливо: учебное пособие/ СПбГТУРП. – СПб., 2011. -84 с.: ил.15.

2.2.3 Зах, Р.Г. Котельные установки. – М.: Энергия, 1968. – 352 с.

2.2.4 Щеголев, М.М. Котельные установки : учебник для вузов / М.М. Щеголев, Ю.Л. Гусев, М.С. Иванова. – М.: Стройиздат, 1972. – 384 с.

2.2.5. Эстеркин, Р.И. Промышленные парогенерирующие установки. – Л.: Энергия. Ленингр. отд-ние, 1980. – 400 с.