Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Глава 21 Огнестойкость строительных конструкций...doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
901.74 Кб
Скачать

21.3.Огнестойкость каменных конструкций

Огнестойкость каменных конструкций зависит от их сечения, конструктивного исполнения, теплофизических свойств каменных материалов и способов обогрева.

По восприятию нагрузок все каменные конструкции, без применения в них каких-либо других материалов, работают только на сжатие и подразделяются на несущие и самонесущие. Благодаря своей массивности и тепло-физическим показателям каменные конструкции обладают хорошим сопротивлением действию огня в условиях пожара.

Высоким пределом огнестойкости обладают глиняные кирпичные конструкции. В условиях пожара кирпичные конструкции удовлетворительно выдерживают нагревание до 900°С, не снижая практически своей прочности и не обнаруживая признаков разрушения.

При нагревании до 800°С наблюдаются только поверхностные повреждения кладки в виде волосяных трещин и отслаивания тонких слоев. Конструкции, выполненные из глиняного кирпича, являются надежной преградой против распространения возникшего пожара. Предел огнестойкости конструкций из силикатного кирпича по прогреву такой же, как и из керамического кирпича. Это объясняется их одинаковыми теплофизическими характеристиками. Однако по изменению прочности при действии высокой температуры силикатный кирпич уступает глиняному.

21.4. Огнестойкость желзобетонных конструкций

Железобетонные конструкции благодаря их негорючести и сравнительно небольшой теплопроводности довольно хорошо сопротивляются воздействию агрессивных факторов пожара. Однако они не могут беспредельно сопротивляться пожару. Современные железобетонные конструкции, как правило, выполняют тонкостенными, без монолитной связи с другими элементами здания, что ограничивает их способность нести свои рабочие функции в условиях пожара до 1 ч, а иногда и менее. Еще меньшим пределом огнестойкости обладают увлажненные железобетонные конструкции. Если повышение влажности конструкции до 3,5 % увеличивает предел огнестойкости, то дальнейшее повышение влажности бетона плотностью более 1200 кг/м3 при кратковременном действии пожара может вызвать взрыв бетона и быстрое разрушение конструкции .

Предел огнестойкости ограждающих конструкций по прогреву противоположной огню поверхности на 160°С (перекрытия, стены, перегородки) зависит от их толщины, вида бетона и его влажности. С увеличением толщины и уменьшением плотности бетона предел огнестойкости возрастает.

Предел огнестойкости по признаку потери несущей способности зависит от вида и статической схемы опирания конструкции. Однопролетные свободно опертые изгибаемые элементы (балочные плиты, панели и настилы перекрытий, балки прогоны) при действии пожара разрушаются в результате нагревания продольной

8*сторон (со стороны нижней и двух боковых граней), а плиты — только со стороны нижней поверхности.

При одних и тех же конструктивных параметрах предел огнестойкости балок меньше, чем плит, так как при пожаре балки обогреваются с тех сторон (со стороны нижней и двух боковых панелей), а плиты – только со стороны нижней поверхности.

Наилучшей арматурной сталью с точки зрения огнестойкости является сталь класса А-ІІІ марки 25Г2С. Критическая температура этой стали в момент наступления предела огнестойкости конструкции, загруженной нормативной нагрузкой, составляет 570°С.

Выпускаемые заводами крупнопустотные предварительно напряженные настилы из тяжелого бетона с защитным слоем 20 мм и стержневой арматурой из стали класса А-1У имеют предел огнестойкости 1 ч, что позволяет использовать данные настилы в жилых зданиях.

Плиты и панели сплошного сечения из обычного железобетона при защитном слое 10 мм имеют пределы огнестойкости: арматура из стали классов А-1 и А-ІІ—0,75 ч; А-ІІІ (марки 25Г2С) — 1 ч.

В ряде случаев тонкостенные изгибаемые конструкции (пустотные и ребристые панели и настилы, ригели и балки при ширине сечения 160 мм и менее, не имеющие вертикальных каркасов у опор) при действии пожара могут разрушаться преждевременно по косому сечению у опор. Такой характер разрушения предотвращают путем установки на приопорных участках данных конструкций вертикальных каркасов длиной не менее 1/4 пролета.

Плиты, опертые по контуру, имеют предел огнестойкости значительно выше, чем простые изгибаемые элементы. Эти плиты армированы рабочей арматурой в двух направлениях, поэтому их огнестойкость зависит дополнительно от соотношения арматуры в коротком и длинном пролетах. У квадратных плит, имеющих данное соотношение, равное единице, критическая температура арматуры при наступлении предела огнестойкости составляет 800°С.

С увеличением соотношения сторон плиты критическая температура уменьшается, следовательно, снижается и предел огнестойкости. При соотношениях сторон более четырех предел огнестойкости практически равен пределу огнестойкости плит, опертых по двум сторонам.

Статически неопределимые балки и балочные плиты при нагревании утрачивают несущую способность в результате разрушения опорных и пролетных сечений. Сечения в пролете разрушаются в результате снижения прочности нижней продольной арматуры, а опорные сечения — вследствие потери прочности бетона в нижней сжатой зоне, нагревающейся до высоких температур. Скорость прогрева этой зоны зависит от размеров поперечного сечения, поэтому огнестойкость статически неопределимых балочных плит зависит от их толщины, а балок — от ширины и высоты сечения. При больших размерах поперечного сечения предел огнестойкости рассматриваемых конструкций значительно выше, чем статически определимых конструкций (однопро-летные свободно опертые балки и плиты), и в ряде случаев (у толстых балочных плит, у балок, имеющих сильную верхнюю опорную арматуру) практически не зависит от толщины защитного слоя у продольной нижней арматуры.

☺ Колонны. Предел огнестойкости колонн зависит от схемы приложения нагрузки (центральное, внецентренное), размеров поперечного сечения, процента армирования, вида крупного заполнителя бетона и толщины защитного слоя у продольной арматуры.

Разрушение колонн при нагревании происходит в результате снижения прочности арматуры и бетона. Внецентренное приложение нагрузки уменьшает огнестойкость колонн. Если нагрузка приложена с большим эксцентриситетом, то огнестойкость колонн будет зависеть от толщины защитного слоя у растянутой арматуры, т. е. характер работы таких колонн при нагревании такой же, как и простых балок. Огнестойкость колонны с малым эксцентриситетом приближается к огнестойкости центрально-сжатых колонн. Колонны из бетона на гранитном щебне обладают меньшей огнестойкостью (на 20%), чем колонны на известняковом щебне. Это объясняетсятем, что кварц, входящий в состав гранитов, разрушается при температуре 573°С, а известняки начинают разрушаться при температуре начала их обжига 800°С.

• Стены. При пожарах, как правило, стены обогреваются с одной сторону и поэтому прогибаются или в сторону пожара, или в обратном направлении. Стена из центрально-сжатой конструкции превращается во внецентренно сжатую с увеличивающимся во времени эксцентриситетом. В этих условиях огнестойкость несущих стен в значительной степени зависит от нагрузки и от их толщины. С увеличением нагрузки и уменьшением толщины стены ее предел огнестойкости уменьшается, и наоборот.

С увеличением этажности зданий нагрузка на стены возрастает, поэтому для обеспечения необходимой огнестойкости толщину несущих поперечных стен в жилых зданиях принимают равной (мм): в 5...9-этажных зданиях— 120, 12-этажных— 140, 16-этажных— 160, в домах высотой более 16 этажей— 180 и более.

Однослойные, двухслойные и трехслойные самонесущие панели наружных стен подвергаются действию небольших нагрузок, поэтому огнестойкость этих стен обычно удовлетворяет противопожарным требованиям.

Несущая способность стен при действии высокой температуры определяется не только изменением прочностных характеристик бетона и стали, но главным образом деформативностью элемента в целом. Огнестойкость стен определяется, как правило, потерей несущей способности (разрушением) в нагретом состоянии; признак же обогрева «холодной» поверхности стены на 160°С не является характерным. Предел огнестойкости находится в зависимости от рабочей нагрузки (запаса прочности конструкции). Разрушение стен от одностороннего воздействия огня происходит по одной их трех схем:

1) с необратимым развитием прогиба в сторону обогреваемой поверхности стены и ее разрушением в середине

высоты по первому или второму случаю внецентренного сжатия (по нагретой арматуре или «холодному» бетону);

2)с прогибом элемента в начале в сторону нагревания, а на конечной стадии в противоположном направлении; разрушение — в середине высоты по нагретому бетону или по «холодной» (растянутой) арматуре;

3)с переменной направления прогиба, как и в схеме 1, но разрушение стены происходит в при опорных зонах по бетону «холодной» поверхности или по косым сечениям.

Первая схема разрушения характерна для гибких стен (21.5), вторая и третья — для стен с меньшей гибкостью и платформенно опертых. Если ограничить свободу поворота опорных сечений стены, как это имеет место при платформенном опирании, уменьшается ее деформативность и поэтому предел огнестойкости увеличивается. Так, платформенное опирание стен (на не смещаемые плоскости) увеличивало предел огнестойкости в среднем в два раза по сравнению с шарнирным опиранием независимо от схемы разрушения элемента.

Уменьшение процента армирования стен при шарнирном опирании снижает предел огнестойкости; при платформенном же опирании изменение в обычных пределах армирования стен на их огнестойкость практически не влияет. При нагревании стены одновременно с двух сторон (межкомнатные стены) у нее не возникает температурного прогиба, конструкция продолжает работать на центральное сжатие и поэтому предел огнестойкости не ниже, чем в случае одностороннего обогрева.