
- •Министерство образования и науки республики казахстан казахский агротехнический университет им. С. Сейфуллина
- •Учебно-методический комплекс для специальности
- •5В012000 «профессиональное обучение»
- •Предисловие
- •Распределение учебного времени
- •5. Краткое описание курса
- •5.1 Цели изучения курса оенд:
- •5.2 Задачи изучения курса:
- •6. Содержание курса
- •6.1 Перечень лекционных занятий
- •8. Список литературы Основная литература
- •Дополнительная литература
- •9. Политика курса
- •10. Информация об оценке знаний
- •Политика выставления оценок
- •Шкала оценки знаний студентов
- •Тема 1. Элементы кинематики
- •Тема 2. Динамика частиц
- •Тема 3. Работа и энергия
- •Тема 4. Твердое тело в механике
- •Тема 5. Физика колебаний
- •Тема 6. Молекулярно - кинетическая теория идеального газа
- •Тема 7. Основы термодинамики
- •Тема 8. Электростатика
- •Тема 9. Постоянный электрический ток
- •Тема 10. Магнитное поле в вакууме и в веществе
- •Тема 11. Явление электромагнитной индукции
- •Тема 12. Основы теории Максвелла для электромагнитного поля
- •Тема 13. Волновая оптика
- •Тема 14. Квантовая природа излучения
- •Тема 15. Элементы квантовой физики атомов
- •Элементы физики атомного ядра и элементарных частиц
- •Изучение движения тел по наклонной плоскости
- •Порядок работы
- •Контрольные вопросы
- •Изучение собственных колебаний пружинного маятника
- •Натуральный логарифм этого отношения называется логарифмическим декрементом затухания:
- •Порядок работы
- •Контрольные вопросы
- •Определение момента инерции маятника максвелла
- •На маятник действуют две силы: сила тяжести ft, направленная вертикально вниз и сила упругости двух нитей 2т (рис.2).
- •Порядок работы
- •Определение коэффициента вязкости жидкости методом стокса
- •Порядок работы
- •Определение отношения удельных теплоемкостей газа методом адиабатического расширения
- •1.Электроизмерительные приборы и их классификация
- •1.2. Классификация приборов по принципу действия
- •1.3.Характеристики электроизмерительных приборов
- •1.4.Амперметры, вольтметры, гальванометры
- •1.5.Вспомогательные электрические приборы
- •2. Правила работы с электрическими схемами
- •Для соблюдения техники безопасности при работе с электрическими схемами следует:
- •3.Измерения и обработка результатов измерений
- •Контрольные вопросы
- •Определение сопротивления проводников с помощью мостиковой схемы
- •Порядок работы
- •Контрольные вопросы
- •Лабораторная работа № 28 определение горизонтальной составляющей напряженности магнитного поля земли
- •Контрольные вопросы
- •Исследование процесса разряда конденсатора через сопротивление
- •Лабораторная работа № 41 определение длины световой волны с помощью дифракционной решетки
- •Лабораторная работа № 44 изучение поляризации света
- •Снятие вольтамперной характеристики фотоэлемента
- •Зависимость силы тока от прило-
- •Задачи для самостоятельной работы
- •Вопросы экзаменационных тестов Механика
- •Колебания и волны
- •Молекулярная физика и термодинамика
- •Электростатика
- •Постоянный электрический ток
- •Электромагнетизм
- •Оптика и квантовая физика
- •Основная литература
- •Дополнительная литература
- •1. Основные физические постоянные (округленные значения)
- •2. Плотность твердых тел
- •3. Некоторые свойства твердых веществ
- •4. Плотность жидкостей
- •5. Некоторые свойства жидкостей
- •6. Плотность газов (при нормальных условиях)
- •Алия Кенжебековна Мукашева
Тема 2. Динамика частиц
Динамика является основным разделом механики, в её основе лежат три закона Ньютона. С помощью законов Ньютона устанавливается связь между кинематическими и динамическими закономерностями движения.
I закон Ньютона: всякое тело сохраняет состояние покоя или прямолинейного равномерного движения до тех пор, пока внешние воздействия не изменят этого состояния.
Известно, что свойство тел сохранять состояние покоя или равномерного прямолинейного движения называется инерцией.
Поэтому I закон Ньютона – закон инерции, а те системы, по отношению к которым он выполняется - инерциальные системы отсчета.
Инерциальной системой отсчета является такая система, которая покоится, либо движется равномерно и прямолинейно относительно какой-либо другой инерциальной системы.
Масса – мера инертности тела при поступательном движении [m]= [кг].
Сила - является мерой механического воздействия на тело со стороны других тел, в результате которого тело приобретает ускорение или изменяет свою форму и размеры [F] =[H].
II закон Ньютона - основной закон динамики поступательного движения.
II закон Ньютона
Или
F – результирующая сила.
Учитывая,
что в классической механике m
= const,
её можно внести под знак производной
(*)
-
импульс тела.
Тогда уравнение движения материальной
точки
Общая формулировка II закона Ньютона: скорость изменения импульса материальной точки равна действующей на нее силе.
Формулу (*) можно записать:
– основной
закон динамики
изменение импульса тела равно импульсу действующей на него силы.
Вектор Fdt - импульс силы, действующий в течение малого промежутка времени dt и имеет с силой одно направление.
III закон Ньютона утверждает, что силы, с которыми действуют друг на друга материальные точки, всегда равны по модулю, противоположно направлены и действуют вдоль прямой, соединяющей эти точки.
F12 = - F21 - III закон Ньютона
Закон сохранения импульса может быть выведен из законов Ньютона. Он имеет место в изолированной системе тел.
Механическая система тел, на которую не действуют внешние силы называется изолированной (замкнутой).
Рассмотрим взаимодействие двух материальных точек, составляющих изолированную систему. Масса 1ой точки - m1, скорость до взаимодействия - 1, скорость после взаимодействия - 11. Соответственно, m2, 2, 21.
Согласно II закона Ньютона
F
1dt
= d(m1)
F1dt
= m111
- m11
F2dt = d(m2) или F2dt = m221 - m22
По III закону Ньютона F1 = - F2
Следовательно, равны правые части, тогда
m111 - m11 = - (m221 - m22)
или m11 + m22 = m111+ m22 1
т.
е.
–
закон
сохранения импульса
Закон сохранения импульса справедлив не только в классической физике, но и выполняется для замкнутых систем микрочастиц.
Этот закон носит универсальный характер – фундаментальный закон природы.