
- •Министерство образования и науки республики казахстан казахский агротехнический университет им. С. Сейфуллина
- •Учебно-методический комплекс для специальности
- •5В012000 «профессиональное обучение»
- •Предисловие
- •Распределение учебного времени
- •5. Краткое описание курса
- •5.1 Цели изучения курса оенд:
- •5.2 Задачи изучения курса:
- •6. Содержание курса
- •6.1 Перечень лекционных занятий
- •8. Список литературы Основная литература
- •Дополнительная литература
- •9. Политика курса
- •10. Информация об оценке знаний
- •Политика выставления оценок
- •Шкала оценки знаний студентов
- •Тема 1. Элементы кинематики
- •Тема 2. Динамика частиц
- •Тема 3. Работа и энергия
- •Тема 4. Твердое тело в механике
- •Тема 5. Физика колебаний
- •Тема 6. Молекулярно - кинетическая теория идеального газа
- •Тема 7. Основы термодинамики
- •Тема 8. Электростатика
- •Тема 9. Постоянный электрический ток
- •Тема 10. Магнитное поле в вакууме и в веществе
- •Тема 11. Явление электромагнитной индукции
- •Тема 12. Основы теории Максвелла для электромагнитного поля
- •Тема 13. Волновая оптика
- •Тема 14. Квантовая природа излучения
- •Тема 15. Элементы квантовой физики атомов
- •Элементы физики атомного ядра и элементарных частиц
- •Изучение движения тел по наклонной плоскости
- •Порядок работы
- •Контрольные вопросы
- •Изучение собственных колебаний пружинного маятника
- •Натуральный логарифм этого отношения называется логарифмическим декрементом затухания:
- •Порядок работы
- •Контрольные вопросы
- •Определение момента инерции маятника максвелла
- •На маятник действуют две силы: сила тяжести ft, направленная вертикально вниз и сила упругости двух нитей 2т (рис.2).
- •Порядок работы
- •Определение коэффициента вязкости жидкости методом стокса
- •Порядок работы
- •Определение отношения удельных теплоемкостей газа методом адиабатического расширения
- •1.Электроизмерительные приборы и их классификация
- •1.2. Классификация приборов по принципу действия
- •1.3.Характеристики электроизмерительных приборов
- •1.4.Амперметры, вольтметры, гальванометры
- •1.5.Вспомогательные электрические приборы
- •2. Правила работы с электрическими схемами
- •Для соблюдения техники безопасности при работе с электрическими схемами следует:
- •3.Измерения и обработка результатов измерений
- •Контрольные вопросы
- •Определение сопротивления проводников с помощью мостиковой схемы
- •Порядок работы
- •Контрольные вопросы
- •Лабораторная работа № 28 определение горизонтальной составляющей напряженности магнитного поля земли
- •Контрольные вопросы
- •Исследование процесса разряда конденсатора через сопротивление
- •Лабораторная работа № 41 определение длины световой волны с помощью дифракционной решетки
- •Лабораторная работа № 44 изучение поляризации света
- •Снятие вольтамперной характеристики фотоэлемента
- •Зависимость силы тока от прило-
- •Задачи для самостоятельной работы
- •Вопросы экзаменационных тестов Механика
- •Колебания и волны
- •Молекулярная физика и термодинамика
- •Электростатика
- •Постоянный электрический ток
- •Электромагнетизм
- •Оптика и квантовая физика
- •Основная литература
- •Дополнительная литература
- •1. Основные физические постоянные (округленные значения)
- •2. Плотность твердых тел
- •3. Некоторые свойства твердых веществ
- •4. Плотность жидкостей
- •5. Некоторые свойства жидкостей
- •6. Плотность газов (при нормальных условиях)
- •Алия Кенжебековна Мукашева
Контрольные вопросы
1. Что называют свободными колебаниями?
2. Какие колебания называются гармоническими? Записать уравнение.
3. Получить дифференциальные и кинематические уравнения свободных
гармонических и затухающих колебаний.
4. Объяснить по графику х = f (t) затухающих колебаний закон убывания
амплитуды.
5. Физический смысл логарифмического декремента затухания
Л а б о р а т о р н а я р а б о т а № 9
Определение момента инерции маятника максвелла
Ц е л ь р а б о т ы: научиться составлять уравнения для поступатель-ного и вращательного видов движения
П р и б о р ы: маятник Максвелла, штангенциркуль.
Теория метода
Маятник Максвелла представляет собой массивный диск (1) жёстко посаженный на вал (2). Концы вала подвешены на нитях (3) одинаковой длины. Если намотать нити на вал, то маятник поднимется на некоторую высоту h. При отключении электромагнита вал, вращаясь вместе с диском, будет опускаться, а нити будут разматываться. Достигнув нижнего положения, система поднимается вверх, наматывая нити в обратную сторону. Удерживают маятник в верхнем положении электро-
рис. 1. |
магнитом, притягивающий стальной ободок туго надетый на дюралевый диск. При выключении электромагнита маятник, разматывая нити опускается вниз и одновременно включает секундомер, который срабатывает при попадании луча на фотоэлемент. При достижении нижней точки маятник закрывает луч другого фотоэлемента и останавливает секундомер. |
На маятник действуют две силы: сила тяжести ft, направленная вертикально вниз и сила упругости двух нитей 2т (рис.2).
Напишем второй закон Ньютона для поступательного и вращательного движения применительно к маятнику Максвелла.
FT – 2Т = ma (1)
М = J ε (2)
|
где М – момент сил, J - момент инерции ε - угловое ускорение. Момент силы по определению равен произведению силы на плечо и мы вправе написать М = 2Т r (3) где r – радиус вала., на которую наматывается нить. Объединяя формулы (2) и (3) имеем 2Т r = J ε (4) |
Из формулы (1) найдем 2Т
2Т = FT – ma = mg – ma = m(g-a) (5)
Подставляя в формулу (4) значение 2Т имеем
m(g-a)r = J ε (6)
Используя
связь между линейным и угловым ускорениями
a
= r
ε
откуда
подставляя значение ε
в уравнение (6) получим
m(g-a)
r =
r
или
m
(g-a) r2
= J a
(7)
Из этого уравнения найдём момент инерции маятника J
(8)
Пройденный
путь при равноускоренном движении
определяется из уравнения s
= υ0
t
+
Пройденный
путь равен длине нити или высоте h.
Учитывая, что начальная скорость υ0
= 0 имеем
(9)
Подставляя значение ускорения в уравнение (7) найдём окончательное выражение для момента инерции маятника Максвелла
(10)
С
энергетической точки зрения колебания
маятника Максвелла в вертикальной
плоскости происходят в результате
перехода потенциальной энергии маятника
Еп
= mgh
в кинетическую энергию поступательного
и вращательного движения
Ек
+ Евр.
=
+
и наоборот.
В данной работе также определяют силу сопротивления, исходя из закона сохранения энергии следующим образом: если считать, что первоначально маятник находился на высоте h1, а спустя период поднялся на высоту h2 (h2 < h1 из-за сил сопротивления движению), то изменение потенциальной энергии будет равна работе сил сопротивления: mgh1- mgh2 = Fc(h1+ h2)
Отсюда
найдем
(11)