
- •Министерство образования и науки республики казахстан казахский агротехнический университет им. С. Сейфуллина
- •Учебно-методический комплекс для специальности
- •5В012000 «профессиональное обучение»
- •Предисловие
- •Распределение учебного времени
- •5. Краткое описание курса
- •5.1 Цели изучения курса оенд:
- •5.2 Задачи изучения курса:
- •6. Содержание курса
- •6.1 Перечень лекционных занятий
- •8. Список литературы Основная литература
- •Дополнительная литература
- •9. Политика курса
- •10. Информация об оценке знаний
- •Политика выставления оценок
- •Шкала оценки знаний студентов
- •Тема 1. Элементы кинематики
- •Тема 2. Динамика частиц
- •Тема 3. Работа и энергия
- •Тема 4. Твердое тело в механике
- •Тема 5. Физика колебаний
- •Тема 6. Молекулярно - кинетическая теория идеального газа
- •Тема 7. Основы термодинамики
- •Тема 8. Электростатика
- •Тема 9. Постоянный электрический ток
- •Тема 10. Магнитное поле в вакууме и в веществе
- •Тема 11. Явление электромагнитной индукции
- •Тема 12. Основы теории Максвелла для электромагнитного поля
- •Тема 13. Волновая оптика
- •Тема 14. Квантовая природа излучения
- •Тема 15. Элементы квантовой физики атомов
- •Элементы физики атомного ядра и элементарных частиц
- •Изучение движения тел по наклонной плоскости
- •Порядок работы
- •Контрольные вопросы
- •Изучение собственных колебаний пружинного маятника
- •Натуральный логарифм этого отношения называется логарифмическим декрементом затухания:
- •Порядок работы
- •Контрольные вопросы
- •Определение момента инерции маятника максвелла
- •На маятник действуют две силы: сила тяжести ft, направленная вертикально вниз и сила упругости двух нитей 2т (рис.2).
- •Порядок работы
- •Определение коэффициента вязкости жидкости методом стокса
- •Порядок работы
- •Определение отношения удельных теплоемкостей газа методом адиабатического расширения
- •1.Электроизмерительные приборы и их классификация
- •1.2. Классификация приборов по принципу действия
- •1.3.Характеристики электроизмерительных приборов
- •1.4.Амперметры, вольтметры, гальванометры
- •1.5.Вспомогательные электрические приборы
- •2. Правила работы с электрическими схемами
- •Для соблюдения техники безопасности при работе с электрическими схемами следует:
- •3.Измерения и обработка результатов измерений
- •Контрольные вопросы
- •Определение сопротивления проводников с помощью мостиковой схемы
- •Порядок работы
- •Контрольные вопросы
- •Лабораторная работа № 28 определение горизонтальной составляющей напряженности магнитного поля земли
- •Контрольные вопросы
- •Исследование процесса разряда конденсатора через сопротивление
- •Лабораторная работа № 41 определение длины световой волны с помощью дифракционной решетки
- •Лабораторная работа № 44 изучение поляризации света
- •Снятие вольтамперной характеристики фотоэлемента
- •Зависимость силы тока от прило-
- •Задачи для самостоятельной работы
- •Вопросы экзаменационных тестов Механика
- •Колебания и волны
- •Молекулярная физика и термодинамика
- •Электростатика
- •Постоянный электрический ток
- •Электромагнетизм
- •Оптика и квантовая физика
- •Основная литература
- •Дополнительная литература
- •1. Основные физические постоянные (округленные значения)
- •2. Плотность твердых тел
- •3. Некоторые свойства твердых веществ
- •4. Плотность жидкостей
- •5. Некоторые свойства жидкостей
- •6. Плотность газов (при нормальных условиях)
- •Алия Кенжебековна Мукашева
Тема 15. Элементы квантовой физики атомов
Французский ученый Луи де Бройль в 1923 году выдвинул гипотезу об универсальности корпускулярно-волнового дуализма, т.е. не только фотоны, но и электроны и любые другие частицы наряду с корпускулярными обладают также волновыми свойствами.
Количественные
соотношения, связывающие корпускулярные
и волновые свойства частиц
и
Таким
образом, любой частице, обладающей
импульсом, сопоставляют волновой процесс
с длиной волны
- формула
волны де-Бройля
На частицы вещества переносится также связь между полной энергией частицы Е и ν волн де Бройля.
Но тогда волновые свойства должны быть присущи и макроскопическим телам. Например, частице массой 1г, движущейся со скоростью 1м/с соответствует волна де Бройля λ= 10-28м. Такая длина волны лежит за пределами доступной наблюдению области. Поэтому считается, что макроскопические тела проявляют только корпускулярные свойства.
Рассмотрим свойства волн де Бройля. Пусть частица массой m движется со скоростью υ.
Фазовая скорость – скорость перемещения фазы волны
где
– волновое число; ω
– циклическая
частота волны.
Групповая скорость - скорость движения группы волн, образующих в каждый момент времени в пространстве волновой пакет
Для свободной частицы
Тогда
Таким образом, групповая скорость волн де Бройля равна скорости частицы.
Групповая
скорость фотона
равна скорости самого фотона.
Согласно двойственной корпускулярно-волновой природе микрочастиц, используются то волновые, то корпускулярные представления. Поэтому необходимы некоторые ограничения в применении к объектам микромира понятий классической механики.
В классической механике всякая частица движется по определенной траектории, поэтому в любой момент времени фиксированы ее координата и импульс. В случае микрочастиц этого сказать нельзя, это следует из корпускулярно-волнового дуализма. То есть нельзя говорить о движении микрочастицы по определенной траектории и точных значениях ее координаты и импульса.
Таким образом, микрочастица не может иметь одновременно определенную координату (x, y, z) и определенную соответствующую проекцию импульса (px, py , pz), причем неопределенности этих величин удовлетворяют условиям
-
соотношение
неопределенностей Гейзенберга
Соотношение неопределенностей Гейзенберга – квантовое ограничение применимости классической механики к микрообъектам.
Из гипотезы де Бройля и соотношения неопределенностей вытекает, что уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого вытекали бы волновые свойства частиц. Следовательно, это уравнение должно быть волновым.
Это уравнение было сформулировано Шредингером и имеет вид
-
уравнение
Шредингера
где
- постоянная Планка, m
– масса частицы,
-
оператор Лапласа, i
– мнимая
единица,
U (x, y ,z ,t ) - потенциальная энергия частицы,
-
волновая функция частицы.
Уравнение Шредингера для стационарных состояний
где Е – полная энергия частицы, в случае стационарного поля постоянная.