
- •Тематический план
- •Введение
- •Занятия № 1-2
- •1. Тема: Анализ качества лекарственных средств из группы углеводов (моно-, олиго- и полисахариды) и их синтетических аналогов
- •3. Целевые задачи:
- •Гликозидная связь Гликозидная связь
- •Гликозидная связь
- •4. План и организационная структура занятий:
- •5. Задание для самоподготовки студентов:
- •Учебные вопросы для самоподготовки студентов
- •5.3. Проработать тестовые задания
- •5.4. Ситуационные задания:
- •5.5. Задачи:
- •6. Лабораторная работа
- •7. Наглядные пособия, технические средства обучения и контроля:
- •Занятие № 3
- •1. Тема: Анализ качества лекарственных средств из группы сердечных гликозидов и их синтетических аналогов
- •3. Целевые задачи:
- •Реакции на стероидный цикл
- •Реакции на ненасыщенное пятичленное лактонное кольцо
- •Реакции на дезоксисахара
- •4. План и организационная структура занятия:
- •5. Задание для самоподготовки студентов:
- •Учебные вопросы для самоподготовки студентов
- •5.3. Проработать тестовые задания:
- •5.4. Ситуационные задания:
- •5.5. Задачи:
- •6. Лабораторная работа
- •7. Наглядные пособия, технические средства обучения и контроля:
- •Занятия № 4-5
- •1. Тема: Анализ качества лекарственных средств из группы моно- и бициклических терпенов и их синтетических аналогов
- •3. Целевые задачи:
- •4. План и организационная структура занятий:
- •5. Задание для самоподготовки студентов:
- •Учебные вопросы для самоподготовки студентов
- •5.3. Проработать тестовые задания
- •5.4. Ситуационные задания:
- •5.5. Задачи:
- •6. Лабораторная работа
- •7. Наглядные пособия, технические средства обучения и контроля:
- •Занятие № 6
- •1. Тема: Итоговое занятие по теории и практике по теме: «Лекарственные средства из группы углеводов, сердечных гликозидов, терпенов и их синтетических аналогов»
- •3. Целевые задачи:
- •4. План и организационная структура занятия:
- •5. Задание для самоподготовки студентов к итоговому занятию
- •5.1. Контрольные вопросы
- •5.2. Тестовые задания к итоговому занятию
- •5.3. Ситуационные задания:
- •5.4. Задачи:
- •Литература
- •Критерии оценивания
- •Содержание
- •Смысловой модуль 2.1. Лекарственные средства из группы углеводов, сердечных гликозидов, терпенов и их синтетических аналогов
6. Лабораторная работа
При выполнении лабораторной работы необходимо строго соблюдать правила безопасной работы в химической лаборатории.
Каждый студент индивидуально проводит анализ качества одного из изучаемых лекарственных средств согласно требованиям ГФУ, АНД или МКК с использованием графологической структуры анализа. Результаты анализа оформляются в виде протокола по установленной форме. Студентом делается вывод о доброкачественности проанализированного лекарственного средства.
УИРС: Каждый студент на основе физических, физико-химических и химических свойств решает вопрос идентификации предложенного лекарственного средства как неизвестной задачи. Кроме того, студент проводит количественное определение данного лекарственного средства различными методами, давая им сравнительную характеристику. Результаты анализа оформляются в виде протокола по установленной форме. Студентом делается вывод о доброкачественности проанализированного лекарственного средства.
7. Наглядные пособия, технические средства обучения и контроля:
Табличный фонд по теме занятия.
Набор образцов лекарственных веществ и лекарственных форм.
Набор реактивов и титрованных растворов, необходимых для проведения испытаний согласно ГФУ, АНД и МКК.
Набор приборов для инструментального анализа лекарственных средств: рефрактометр, поляриметр, фотоэлектроколориметр, УФ-спектрофотометр, колонка для ионообменной хроматографии, хроматографическая камера и пластинки для тонкослойной хроматографии, потенциометр.
Набор химической посуды для проведения анализа: пробирки, колбы, пипетки, цилиндры, бюретки и др.
Вспомогательное оборудование и инвентарь для анализа: бюксы стеклянные, штативы, водяные бани, газовые горелки, разновес технический, разновес аналитический, весы ручные аптечные, весы аналитические, электроплитки, фарфоровые чашки.
Учебные пособия, Государственная фармакопея Украины.
Технические средства обучения и контроля:
карточки для выяснения исходного уровня знаний и умений;
контрольные вопросы и тесты.
Занятия № 4-5
1. Тема: Анализ качества лекарственных средств из группы моно- и бициклических терпенов и их синтетических аналогов
2. ЦЕЛЬ: Овладеть методами анализа лекарственных средств из группы терпенов.
3. Целевые задачи:
3.1. Изучить строение, номенклатуру, синонимы, физико-химические свойства, источники и методы получения лекарственных средств из группы терпенов и их синтетических аналогов.
3.2. Изучить методы анализа рассматриваемой группы лекарственных средств согласно ГФУ, АНД, МКК.
3.3. Предложить и обосновать возможные методы идентификации и количественного определения, исходя из строения лекарственных средств изучаемой группы.
3.4. Изучить специфические примеси, а также методы испытаний на чистоту данной группы веществ.
3.5. Рассмотреть особенности проведения анализа лекарственных средств из группы терпенов и их синтетических аналогов с использованием физических, физико-химических и химических методов.
3.6. Научиться проводить анализ качества рассматриваемой группы лекарственных средств с использованием физических, физико-химических и химических методов.
3.7. Трактовать и давать правильную оценку полученным результатам анализа, делать вывод о качестве анализируемых веществ.
3.8. Объяснять особенности хранения лекарственных средств из группы терпенов и их синтетических аналогов, исходя из их физико-химических свойств.
3.9. Изучить и соблюдать правила безопасной работы в химической лаборатории.
Терпены – класс преимущественно ненасыщенных углеводородов, молекулы которых содержат различное число связанных между собой остатков изопрена:
Изопрен (2-метилбутадиен-1,3)
Общая формула всех терпенов кратна числу изопреновых звеньев, т.е. (C5H8)n, где n≥2 (n обычно лежит в пределах от 2 до 8). Сам изопрен (n = 1) не принято относить к терпенам (рассматривается как алкадиен).
Терпены – это природные органические вещества, т.н. вторичные растительные метаболиты. В больших количествах терпены содержатся в растениях семейства хвойные, во многих эфирных маслах – мяты, розы, лимона, лаванды и др.
При изучении терпенов установлено, что изопреновые звенья в их молекулах связаны между собой по типу «голова к хвосту» («изопреновое правило», Л. Ружичка, 1921 г.). Разветвленный конец (с метильной группой) изопреновой единицы рассматривают как «голову», а неразветвленный – как «хвост».
Рис. 1. Варианты изображения формулы гераниола
Это не является строгим, т.к. известны нерегулярные изопреноиды, образованные по типу «голова к голове» или «хвост к хвосту» (например, при образовании тритерпенов (С30) и тетратерпенов (С40) димеризация идет по типу «хвост к хвосту»). Однако, данное правило помогло выяснить строение многих терпенов и родственных им соединений.
В зависимости от количества изопреновых остатков в молекуле выделяют следующие группы терпенов:
Монотерпены C10H16, (C5H8)2, 2 изопреновых фрагмента;
Сесквитерпены (полуторатерпены), C15H24, (C5H8)3, 3 изопреновых фрагмента;
Дитерпены, C20H32, (C5H8)4, 4 изопреновых фрагмента;
Тритерпены, C30H48, (C5H8)6, 6 изопреновых фрагмента;
Тетратерпены, C40H60, (C5H8)8, 8 изопреновых фрагмента;
Политерпены – соединения с большим числом изопреновых фрагментов (C5H8)n, где n≥8.
Кислородсодержащие производные терпенов – терпеноиды – по характеру функциональных групп разделяют на спирты, альдегиды, кетоны, сложные эфиры, кислоты и т.д.
Молекулы терпенов могут быть ациклическими (с открытой цепью углеродных атомов) и циклическими (моноциклическими, бициклическими и т.д.).
Ациклические монотерпены относятся к типу 2,6-диметилоктана и могут иметь три, две или одну двойную связь. Они представлены углеводородами (мирцен и его изомер оцимен), спиртами (гераниол, линалоол, цитранелол), альдегидами (цитраль, цитронеллаль).
Рис. 2. Принципиальное строение ациклических монотерпенов, производных 2,6-диметилоктана: мирцен (I), оцимен (II), β-линалоол (III), цитраль (IV)
Моноциклические монотерпены относятся к типу п-ментана. Из ненасыщенных углеводородов типа ментана наиболее распространены лимонен, α-, β- и γ-терпинен, α- и β-феландрен и др.
В составе эфирных масел часто встречаются кислородсодержащие производные ментана: спирты (ментол, терпинеол), кетоны (ментон, пулегон, карвон), окиси (цинеол) и перекиси (аскаридол).
Рис. 3. Принципиальное строение моноциклических монотерпенов типа ментана: α-терпинен (I), лимонен (II), терпинеол (III), ментон (IV), 1,8-цинеол (V), аскаридол (эвкалиптол) (VI)
Бициклические монотерпены имеют два конденсированных неароматических кольца. В зависимости от строения углеводорода их делят на типы: туйана, карана, пинана, камфана, фенхана и пр.
Рис. 4. Принципиальное строение бициклических монотерпеноидов типа туйана: туйан (I), туйол (II), туйон (III), сабинен (IV), сабинон (V)
Рис. 5. Принципиальное строение бициклических монотерпеноидов типа карана: каран (I), Δ3-карен (II), Δ4-карен (III)
Рис. 6. Принципиальное строение бициклических монотерпеноидов типа пинана: пинан (I), α-пинен (II), β-пинен (III)
Рис. 7. Принципиальное строение бициклических монотерпеноидов типа камфана: камфан (I), борнеол (II), (+)-камфора (III), (-)-камфора (IV)
Ациклические сесквитерпены состоят из трех С5-единиц по изопреноидному правилу «голова к хвосту».
Рис. 8. Принципиальное строение ациклических сесквитерпенов: фарнезен
Моноциклические сесквитерпены – это соединения с циклогексановым одним незамкнутым гидроароматическим кольцом и двумя-четырьмя двойными связями. Распространены в природе соединения бисаболана (лимон, ромашка, имбирь, виды сосны), гумулана (хмель), элемана (аир).
Рис. 9. Принципиальное строение моноциклических сесквитерпенов: бисаболан (I), γ-бисаболен (II), α-бисаболол (III)
Бициклические сесквитерпены имеют два конденсированных углеводородных кольца с 2-4 двойными связями. По строению колец и типом конденсации или связи сесквитерпены делят на группы, основными из которых являются кадинан, эвдесман и гвайан:
Рис. 10. Принципиальное строение бициклических сесквитерпенов: кадинан (I), эвдесман (II), гвайан (III)
Терпены весьма реакционноспособны: легко окисляются на воздухе, особенно на свету, часто превращаясь при этом в кислородсодержащие соединения; при нагревании изомеризуются (прежде всего при взаимодействии с кислыми агентами); диспропорционируют в присутствии катализаторов (Pd, Pt, Ni); по двойным связям легко гидрируются, гидратируются, присоединяют галогены, галогеноводороды, органические кислоты и т. д. При сильном нагревании без доступа воздуха (400-500°С) кольца терпенов раскрываются, причем из бициклических терпенов можно получить моноциклические и даже алифатические. При нагревании до 700 °С и выше все терпены разлагаются с образованием сложной смеси продуктов (изопрен, ароматические углеводороды и др.).
Терпеноиды являются активными участниками обменных процессов, протекающих в растениях. Некоторые терпеноиды регулируют активность генов растений, участвуют в фотохимических реакциях. Углеродные цепи ряда терпеноидов являются ключевыми промежуточными продуктами в биосинтезе стероидных гормонов, холестерина, ферментов, витаминов Д, Е, К, желчных кислот. Растительные терпеноиды имеют широкий спектр биологического действия и поэтому представляют интерес для поиска новых лекарственных препаратов.
Лекарственные средства из группы терпеноидов классифицируют по количеству циклов на моноциклические (ментол рацемический, левоментол, валидол, терпингидрат); бициклические – (камфора, камфора рацемическая, бромкамфора, кислота сульфокамфорная, сульфокамфокаин), 3-я группа препаратов представлена моноциклическим дитерпеном – ретинола ацетатом (витамин А).
Терпены являются одной из важнейших групп душистых веществ, широко применяемых в качестве компонентов парфюмерных смесей и отдушек в косметической промышленности.
Душистые вещества – органические соединения с характерным запахом, применяемые как пахучие компоненты в производстве парфюмерных и косметических изделий, мыла, косметических моющих средств, косметических и других продуктов.
Обширный экспериментальный материал о связи между запахом вещества и структурой его молекулы (тип, число, положение функциональных групп, разветвленность, пространственная структура количество кратных связей и др.) пока недостаточно изучено, чтобы на основании этих данных можно было предсказать запах вещества. За последние столетие выдвинуто порядка 30 теорий, в которых предпринята попытка объяснить природу запаха и его зависимость от свойств душистого вещества. Наиболее известные следующие:
стереохимическая теория (рассматривает молекулы душистого вещества как жесткие стереохимические модели, а их взаимодействие с рецептором описывает на основании исключительно геометрических факторов),
волновая теория (постулирует, что запах определяется спектром колебательных частот молекул в диапазоне волн 500-50 см–1),
теория функциональных групп (природа запаха зависит от общего профиля молекулы и наличия функциональных групп).
Однако ни одна из этих (и многих других теорий) не позволяет успешно предсказать запах вещества. Согласно современным представлениям, восприятие душистого вещества и узнавание запаха на клеточном уровне не отличается принципиально от восприятия других химических сигналов и реализуется посредством общих молекулярных механизмов.
Рис. 11. Соединения из группы терпенов, применяемые в качестве душистых веществ или являющиеся их предшественниками: мирцен (I), гераниол (II), линалоол (III), мирценол (IV), фарнезол (V), гераниаль (VI), нераль (VII), жасмон (VIII)
Мирцен (I) – (2-метил-6-метилен-2,7-октадиен), бесцветная жидкость с приятным ароматом, растворим в этаноле, не растворим в воде, легко окисляется на воздухе и при нагревании, получают дегидратацией линалоола или пиролизом β-пинена при 600-700 °С. Для идентификации мирцена обычно получают его тетрабромид (т.пл. 95-96 °С) или аддукт с малеиновым ангидридом. Является ключевым исходным веществом для получения многих душистых веществ.
Гераниол (II) – (3,7-диметил-транс-2,6-октадиен-1-ол), бесцветная или светло-желтая жидкость с ароматом розы, растворим в этаноле, плохо растворим в воде. Содержится (преимущественно в виде эфиров) в гераниевом, цитронелловом, розовом, лемонграссовом и др. эфирных маслах. В промышленных масштабах чаще всего получают синтетически, используя в качестве исходного вещества мирцен. Применяют в качестве компонента парфюмерных композиций и отдушек.
Линалоол (III) – (3,7-диметил-1,6-октадиен-3-ол), бесцветная жидкость с ароматом ландыша, растворим в этаноле, плохо растворим в воде. Содержится в гераниевом, бергамотовом, лавандовом, кориандровом и др. эфирных маслах. В промышленных масштабах получают, главным образом, химической модификацией α-пинена.
Рис. 12. Получение линалоола из α-пинена
Линалоол находит широкое применение в качестве компонента парфюмерных композиций, отдушек, служит сырьем для получения ряда других душистых веществ, используется для получения витамина Е и некоторых других лекарственных препаратов.
Мирценол (IV) – (2-метил-6-метилен-7-октен-2-ол), бесцветная жидкость с фруктовым запахом, растворима в этаноле и органических растворителях, не растворим в воде. Содержится в китайском лавандовом масле и некоторых других растениях. В промышленных масштабах получают синтетически. Применяют в качестве компонента парфюмерных композиций и отдушек.
Фарнезол (V) – (3,7,11-триметил-2,6,10-додекатриен-1-ол), бесцветная вязкая жидкость, при сильном разбавлении имеет запах ландыша. Содержится в неролиевом, цитронероловом, розовом и др. эфирных маслах. Получают выделением из эфирных масел. Применяют как компонент парфюмерных композиций и фиксатор запаха.
Цитраль – представляет собой смесь геометрических изомеров 3,7-диметил-2,6-октадиен-1-аля (структуры VI и VII), гераниаля и нераля соответственно. В природном цитрале преобладает гераниаль (до 90%). Содержится в лемонграссовом, лимонном, эвкалиптовом и др. эфирных маслах. В промышленных масштабах получают как природным, так и синтетическим методами. Для идентификации получают семикарбазоны или 2,4-динитрофенилгидразоны, которые имеют точные температуры плавления. Применяют как компонент парфюмерных композиций и пищевых эссенций, в качестве противовоспалительного и антисептического средства, а также как исходное вещество для синтеза многих душистых соединений.
цис-Жасмон (VIII) – [3-метил-2-(2-цис-пентен-1-ил)-2-циклопентен-1-он], бесцветная или слегка желтоватая маслянистая жидкость с запахом жасмина, растворима в этаноле и органических растворителях, не растворим в воде. Содержится в масле цветков жасмина (источник промышленного получения), неролиевом, апельсиновом и др. эфирных маслах. Используется для приготовления парфюмерных композиций, пищевых эссенций.