
- •Электрические станции и подстанции
- •Оглавление
- •Раздел 2 23
- •Тема 2.1 (1 час) 23
- •Раздел 2 39
- •Тема 2.1 (2 часа) 39
- •Раздел 3 60
- •Тема 3.1 (2 часа) 60
- •Тема 3.2 (2 часа) 79
- •Тема 3.3 (2 часа) 97
- •Тема 3.3 (2 часа) 103
- •Тема 3.3 (2 часа) 115
- •Тема 3.3 (1 час) 121
- •Тема 3.4 (2 часа) 129
- •Тема 3.4 (1 час) 134
- •Введение
- •Раздел 1
- •Тема 1.1—1.3 (2 часа)
- •1.2. Условные обозначения, система заземления нейтралей. Стандартная шкала мощностей и напряжений
- •1.3. Основные типы станций: тэц, кэс, гэс, аэс, гту, пгу. Возобновляемые источники энергии: ГэоЭс, вэс, пэс и др.
- •Вопросы для самопроверки по разделу 1:
- •Тема 1.4 (1 час)
- •Раздел 2
- •Тема 2.1 (1 час)
- •1.4.2. Качество электроэнергии
- •1.4.3. Классификация потребителей
- •2.1.1. Физические процессы в электрической дуге
- •Раздел 2
- •Тема 2.1 (2 часа)
- •2.1.3. Отключение цепей переменного тока
- •2.1.4. Основные способы гашения дуги Способы гашения дуги в коммутационных аппаратах до 1000 в
- •Основные способы гашения дуги в аппаратах выше 1 кВ
- •Тема 2.2 (0,5 часа)
- •Тема 2.3 (1 час)
- •Тема 2.4 (0,5 часа)
- •2.2.2. Тепловое действие тока. Определение Iдл. Доп.
- •2.3.1. Термическое действие токов кз
- •2.3.2. Электродинамическое действие токов кз
- •2.4.1. Координация токов кз. Способы ограничения токов кз (секционирование, реакторы, трансформаторы с расщеплённой обмоткой)
- •Вопросы для самопроверки по разделу 2:
- •Раздел 3
- •Тема 3.1 (2 часа)
- •3.1.2. Жёсткие шины, кэт. Конструкции и выбор
- •Лекция 6
- •Тема 3.1 (2 часа) Шины, изоляторы и контактные соединения План
- •3.1.3. Изоляторы, конструкции и выбор
- •3.1.4 Конструкции контактов шин и аппаратов. Основные характеристики контактных соединений
- •Лекция 7
- •Тема 3.2 (2 часа) Электрические аппараты. Коммутационные аппараты
- •3.2.1 Рубильники, пакетные выключатели и переключатели
- •3.2.2. Плавкие предохранители. Контакторы. Магнитные пускатели.
- •5 Латунный колпачок; 6 медный контактный нож
- •Проверка плавких предохранителей
- •Iном Iнорм.Расч;
- •Iоткл.Ном Iп.Ож Iп0,
- •3.2.3. Воздушные автоматические выключатели и узо
- •Проверка автоматических выключателей
- •Iном Iнорм.Расч;
- •Iоткл.Ном Iп. Iп0;
- •Iвкл iуд; Та.Норм Та. Устройство защитного отключения
- •Тема 3.3 (2 часа)
- •3.3.1. Коммутационные аппараты на напряжение выше 1000 в
- •3.3.2. Выключатели нагрузки
- •3.3.3. Вакуумные выключатели
- •Тема 3.3 (2 часа)
- •3.3.5. Приводы выключателей
- •3.3.6. Выбор выключателей при проектировании. Новые тенденции применения выключателей
- •Iном Iнорм.Расч;
- •Тема 3.3 (2 часа)
- •3.3.8. Короткозамыкатели и отделители. Принцип действия, конструкции, марки, условия выбора
- •Тема 3.3 (1 час)
- •Тема 3.4 (1 час)
- •3.3.9. Плавкие предохранители
- •1 Патрон; 2 плавкая вставка; 3 металлическая проволока; 4 гибкий проводник;
- •5 Наконечник; 6 скоба; 7 контактная скоба; 8 держатель;
- •9 Штыревой изолятор
- •3.4.1. Трансформаторы тока. Принцип действия, конструкции, марки. Векторные диаграммы, классы точности
- •Тема 3.4 (2 часа)
- •3.4.3. Трансформаторы напряжения. Принцип действия, конструкции, марки. Условия выбора
- •Тема 3.4 (1 час)
- •Тема 3.5 (1 час)
- •3.5.1. Реакторы. Принцип действия, конструкции, область применения
- •Вопросы для самопроверки по разделу 3:
- •Раздел 4
- •Тема 4.1. (6 часов)
- •4.1.1. Системы охлаждения
- •4.1.2 Системы возбуждения генераторов
- •4.1.4 Гашение поля генераторов
- •4.1.4 Включение генераторов на параллельную работу
- •Режимы работы синхронных генераторов
- •4.1.6 Автоматическое регулирование возбуждения
- •Лекции 17, 18
- •Тема 4.2. (4 часа) Силовые трансформаторы План
- •4.2 Силовые трансформаторы
- •4.2.1. Общие сведения о работе и конструкциях трансформаторов
- •4.2.2 Маркировка и технические характеристики
- •4.2.3 Системы охлаждения силовых трансформаторов
- •4.2.4 Схемы и группы соединений
- •4.2.5 Регулирование напряжений
- •4.2.6 Включение трансформаторов на параллельную работу
- •4.2.7 Нагрузочная способность трансформаторов
- •4.2.8. Автотрансформаторы, особенности конструкции и режимы работы
- •Преобразуя правую часть выражения, получаем
- •Мощность общей обмотки
- •Вопросы для самопроверки: к разделу 4:
- •Раздел 5
- •Тема 5.1 (6 часов)
- •С 3/2 выключателями на присоединение распределительных устройствах 330—750 кВ применяется схема с двумя системами шин и тремя выключателями на две цепи.
- •Конструкции закрытых распределительных устройств (зру)
- •Р ис. 5.17. Схема заполнения гру 6—10 кВ с двумя системами сборных шин
- •5.1.3. Комплектные распределительные устройства высокого напряжения
- •5.1.4. Конструкции открытых распределительных устройств
- •5.1.5 Размещение ру на территории электростанций и подстанций
- •Продолжение рис. 5.51.
- •Тема 5.2. (4 часа)
- •5.2.2. Привод механизмов собственных нужд. Асинхронные двигатели. Пуск и самозапуск электродвигателей
- •5.2.3 Схемы сн кэс, тэц
- •Схемы сети 6,3 кВ собственных нужд
- •Схемы сети 6,3 кВ на блочных электростанциях (кэс)
- •Схемы сети 6,3 кВ на станциях с поперечными связями в тепловой части (тэц)
- •5.2.4. Схемы сн подстанций
- •5.2.5. Определение расчетных нагрузок и выбор числа и мощности трансформаторов сн
- •Вопросы для самопроверки: к разделу 5:
- •Раздел 6
- •Тема 6.1. (2 час)
- •6.1 Заземляющие устройства (зу) и защита от перенапряжений
- •6.1.1. Действие электрического тока на человека
- •6.1.2. Назначение и конструкции заземляющих устройств
- •6.1.3 Расчёт заземляющих устройств в установках с эффективно-заземлённой нейтралью при напряжении110 кВ и выше, незаземлённой и, резонансно-заземлённой нейтралью
- •6.1.4. Внутренние и атмосферные перенапряжения. Молниеотводы. Устройство молниезащиты
- •Защита ору от прямых ударов молнии
- •6.1.5 Разрядники и ограничители перенапряжений (опн)
- •Тема 6.2. (2 часа)
- •6.2.2. Источники постоянного оперативного тока
- •6.2.3 Схемы распределения постоянного оперативного тока
- •6.2.4. Источники переменного оперативного тока
- •6.2.5. Установки выпрямленного оперативного тока
- •Лекция 26
- •Тема 6.3. (1 час) План
- •6.3. Схемы и аппаратура цепей управления коммутационными аппаратами
- •6.3 Схемы и аппаратура цепей управления коммутационными аппаратами
- •Вопросы для самопроверки: к разделу 6:
- •Заключение
- •Библиографический список
Тема 3.4 (2 часа)
Измерительные трансформаторы
План
3.4.2. Выбор трансформаторов тока.
3.4.3. Трансформаторы напряжения. Принцип действия, конструкции, марки. Условия выбора.
3.4.2. Выбор трансформаторов тока
Трансформаторы тока выбирают:
по напряжению установки Uуст ≤ Uном
по току Iнорм ≤ I1ном; Imax ≤ I1ном
по конструкции и классу точности
по электродинамической и термической стойкости
Рекомендуется применять измерительные трансформаторы тока:
трансформаторы тока на класс напряжения 110 кВ и выше с классом точности обмоток измерения для АИИС КУЭ подстанций ЕНЭС 0,2S или 0,2, обеспечивающие повышенную надежность, взрыво и пожаробезопасность;
элегазовые и маслонаполненные трансформаторы тока;
комбинированные трансформаторы тока и напряжения для установки в ячейках ВЛ 330750 кВ в целях их компактизации.
Ограничения по применению технологий.
Запрещается применять трансформаторы тока с классом точности обмотки измерения для АИИС КУЭ хуже 0,2, и хуже 0.5 для АСУ ТП.
3.4.3. Трансформаторы напряжения. Принцип действия, конструкции, марки. Условия выбора
Трансформатор напряжения (ТН) предназначен для преобразования высокого напряжения до стандартного значения 100; 100/√З или 100/3 В и для отделения цепей измерения и релейной защиты от первичных цепей высокого напряжения. Трансформатор напряжения имеет замкнутый магнитопровод, первичную и одну или две вторичные обмотки. Первичная обмотка включается параллельно в цепь измеряемого напряжения, ко вторичной обмотке присоединяются измерительные приборы, устройства релейной защиты и автоматики. Внешний вид (а) и принципиальная электрическая схем (б) трансформаторов ЗНОЛ и НОЛ приведены на рисунках рис. 3.37 и рис. 3.38.
а б
Рис. 3.37. Внешний вид (а) и принципиальная электрическая схема (б)
трансформатора ЗНОЛ
Рис.3.38. Внешний вид (а) и принципиальная электрическая схема (б)
трансформаторов НОЛ
К основным параметрам трансформатора тока относятся: U1ном — напряжение первичное номинальное; U2ном — напряжение вторичное номинальное; Kтнном — номинальный коэффициент трансформации (U1ном / U2ном ) и другие.
В зависимости от назначения могут применяться трансформаторы напряжения с различными схемами соединения обмоток. Для измерения трех междуфазных напряжений можно использовать два однофазных двухобмоточных трансформатора (НОС, НОЛ), соединенных по схеме открытого треугольника, а также трехфазный двухобмоточный трансформатор НТМК, обмотки которого соединены в звезду. Разработаны антирезонансные трансформаторы напряжения — НАМИ.
На высокие напряжения применяются каскадные (НКФ), емкостные делители напряжения (рис. 3.39, 3.40 б).
Емкостный делитель напряжения состоит из одного либо двух модулей, установленных один на другой. Каждый модуль содержит большое количество последовательных емкостных элементов, помещённых в фарфоровые покрышки.
В конструкции трансформаторов напряжения предусматривается компенсация погрешности по напряжению путем уменьшения числа витков первичной обмотки, а также компенсация угловой погрешности за счет специальных компенсирующих обмоток.
Рис 3.39. Схема ёмкостного трансформатора напряжения:
1 — электромагнитный модуль (ЭМБ): промежуточный трансформатор напряжения с компенсирующим реактором; 2 — первичная обмотка промежуточного трансформатора напряжения; 3 — компенсирующий реактор; 4 — уравнительные обмотки; 5 — вторичные обмотки; 6 — антиферрорезонансная демпфирующая цепь
Суммарное потребление обмоток измерительных приборов и реле, подключенных к вторичной обмотке трансформатора напряжения, не должно превышать номинальную мощность трансформатора напряжения, так как в противном случае это приведет к увеличению погрешностей.
Если объект, в цепях которого необходимо контролировать ток, мощность или другие величины, находятся далеко от щита управления, то сопротивление проводов от приборов до измерительных трансформаторов будет настолько большим, что погрешность измерения возрастает до недопустимого значения. В этом случае используются измерительные преобразователи тока, напряжения, активной и реактивной мощности.
Применение измерительных преобразователей дает следующие преимущества перед традиционным подключением измерительных приборов непосредственно к трансформаторам тока и напряжения:
уменьшается нагрузка трансформаторов тока и напряжения, так как потребляемая преобразователем мощность не превышает 1 ВА по токовым цепям и 10 ВА по цепям напряжения;
— создается возможность непрерывного ввода информации в ЭВМ;
— уменьшается сечение контрольных кабелей;
— легко осуществляется измерение по вызову, так как преобразователи могут работать с разомкнутой цепью;
— для всех измерений применяется простейший прибор — миллиамперметр.
На рис. 3.40а показана конструкция трансформатора напряжения EMF 145 фирмы ABB.
а б
Рис. 3.40. Трансформатор напряжения EMF 145 (ABB) — а;
1 — вывод первичной обмотки; 2 — указатель верхнего допустимого уровня масла;
3 — изолятор; 4 — петли для подъема; 5 — коробка вторичных выводов; 6 — вывод
нейтрали; 7 — расширительная система; 8 — масло; 9 — кварцевый песок; 10 — бумажная изоляция; 11 — бак; 12 — первичная обмотка; 13 — вторичные обмотки; 14 — сердечник; 15 — заземляемый вывод первичной обмотки
Емкостной делитель напряжения CSA или CSB (ABB) — б
1 — расширительная система; 2 — ёмкостные элементы; 3 — ввод промежуточного напряжения; 4 — указатель уровня масла; отверстия; 5 — компенсирующий реактор;
6 — антиферрорезонансная цепь; 7 — первичная и вторичная обмотки; 8 — плоский
линейный вывод; 9 — газовая подушка; 10 — вывод низкого напряжения
(для подключения аппаратуры ВЧ связи); 11 — коробка выводов; 12 — сердечник
ЛЕКЦИЯ 13