- •Глава 7 выявленные предпочтения
- •7.1. Идея выявленных предпочтений
- •7.2. От выявленных предпочтений к предпочтениям
- •7.3. Реконструирование предпочтений
- •7.4 Слабая аксиома выявленных предпочтений
- •7.6 Сильная аксиома выявленных предпочтений (Strong Axiom of Revealed Preference — sarp)
- •7.8. Индексы
- •7.9. Индексы цен
- •Глава 8 уравнение слуцкого
- •8.1. Эффект замещения
- •8.2. Эффект дохода
- •8.3. Знак эффекта замещения
- •8.4. Общее изменение спроса
- •8.5. Отношения изменений
- •8.6. Закон спроса
- •8.7. Примеры эффектов дохода и замещения
- •8.8. Другой эффект замещения
- •8.9 Кривые компенсированного спроса
- •Глава 9 купля и продажа
- •9.1. Чистый спрос и валовой спрос
- •9.2. Бюджетное ограничение
- •9.3. Изменение начального запаса
- •9.4. Изменения цен
- •9.5. Кривые "цена—потребление" и кривые спроса
- •9.6. И снова уравнение Слуцкого
- •XXXXXXXXX.
- •9.7. Применение уравнения Слуцкого
- •9.8. Предложение труда
- •9.9. Сравнительная статика предложения труда
- •Глава 10 межвременной выбор
- •10.1 Бюджетное ограничение
- •10.2 Предпочтения в отношении потребления
- •10.3 Сравнительная статика
- •10.4 Уравнение Слуцкого и межвременной выбор
- •10.5 Инфляция
- •10.6 Текущая стоимость: более пристальный взгляд
- •10.7 Анализ текущей стоимости для нескольких периодов
- •10.8 Применение текущей стоимости
- •10.9 Облигации
- •10.10 Налоги
- •10.11 Выбор ставки процента
- •Глава 11
- •Глава 12 неопределенность
- •12.1 Обусловленное потребление
- •12.2 Функции полезности и вероятности
- •12.3 Ожидаемая полезность
- •12.4 В чем рациональность представления предпочтений в виде ожидаемой полезности
- •12.5 Нерасположенность к риску
- •12.6 Диверсификация
- •12.7 Рассредоточение риска
- •12.8 Роль фондового рынка
- •Глава 13 рисковые акты
- •13.1 Полезность как функция средней и дисперсии относительно нее
- •13.2 Измерение риска
- •13.3 Равновесие на рынке рисковых активов
- •13.4 Как происходит выравнивание доходов
- •Глава 14 излишек потребителя
- •14.1 Спрос на дискретный товар
- •14.2 Построение функции полезности на основе функции спроса
- •14.3 Другие интерпретации излишка потребителя
- •14.4 От излишка потребителя к излишку потребителей
- •14.6 Квазилинейная функция полезности
- •14.7 Интерпретация изменения излишка потребителя
- •14.8 Компенсирующая и эквивалентная вариации дохода
- •14.9 Излишек производителя
- •14.10 Подсчет выигрышей и потерь
- •Глава 15 рыночный спрос
- •15.1. От индивидуального спроса к рыночному
- •15.2. Обратная функция спроса
- •15.3. Дискретные товары
- •15.4. Экстенсивный и интенсивный пределы корректировки спроса
- •15.5. Эластичность
- •15.6. Эластичность и спрос
- •15.7. Эластичность и общий доход
- •15.8. Кривые спроса с постоянной эластичностью
- •15.9. Эластичность и предельный доход
- •15.10. Кривые предельного дохода
- •15.11. Эластичность спроса по доходу
- •Глава 16 равновесие
- •16.1. Предложение
- •16.2. Рыночное равновесие
- •16.3. Два особых случая
- •16.4. Обратные кривые спроса и предложения
- •16.5. Сравнительная статика
- •16.6. Налоги
- •16.7. Перекладывание налога
- •16.8. Потеря мертвого груза в результате введения налога
- •16.9. Эффективность по Парето
- •Глава 17 технология
- •17.1 Ресурсы и выпуск
- •17.2. Описание технологических ограничений
- •17.3. Примеры технологии
- •17.4. Свойства технологии
- •17.5. Предельный продукт
- •17.6. Технологическая норма замещения
- •17.7. Убывание предельного продукта
- •17.8. Убывание технологической нормы замещения
- •17.9. Короткий и длительный периоды
- •17.10. Отдача от масштаба
- •Глава 18 максимизация прибыли
- •18.1. Прибыль
- •18.2. Организационные формы фирм
- •18.3. Прибыль и рыночная стоимость фирмы
- •18.4. Постоянные и переменные факторы
- •18.5. Максимизация прибыли в коротком периоде
- •18.6. Сравнительная статика
- •18.7. Максимизация прибыли в длительном периоде
- •18.8. Обратные кривые спроса на факторы
- •18.9. Максимизация прибыли и отдача от масштаба
- •18.10. Выявленная прибыльность
- •18.11. Минимизация издержек
- •Глава 19 минимизация издержек
- •19.1. Минимизация издержек
- •19.2. Выявленная минимизация издержек
- •VVVVVVVVVVVVVVVVVVVVVVVVVV.
- •19.3. Отдача от масштаба и функция издержек
- •19.4. Долгосрочные и краткосрочные издержки
- •19.5. Постоянные и квазипостоянные издержки
- •19.6. Невозвратные издержки
- •Глава 20 кривые издержек
- •20.1. Средние издержки
- •20.2. Предельные издержки
- •20.3. Предельные издержки и переменные издержки
- •20.4. Долгосрочные издержки
- •20.5. Дискретные уровни размера завода
- •20.6. Долгосрочные предельные издержки
- •Глава 21 предложение фирмы
- •21.1. Рыночная среда
- •21.2. Чистая конкуренция
- •21.3. Решение о предложении, принимаемое конкурентной фирмой
- •21.4. Исключение
- •21.5. Другое исключение
- •21.6. Обратная функция предложения
- •21.7. Прибыль и излишек производителя
- •21.8. Кривая долгосрочного предложения фирмы
- •21.9. Долгосрочные постоянные средние издержки
- •Глава 22 предложение отрасли
- •22.1. Краткосрочное предложение отрасли
- •22.2. Равновесие отрасли в коротком периоде
- •22.3. Равновесие отрасли в длительном периоде
- •22.4. Кривая долгосрочного предложения
- •22.5. Смысл нулевой прибыли
- •22.6. Постоянные факторы производства и экономическая рента
- •22.7. Экономическая рента
- •22.8. Арендные ставки и цены
- •22.9. Политика в отношении ренты
- •22.10. Энергетическая политика
- •Глава 23 монополия
- •23.1. Максимизация прибыли
- •23.2. Линейная кривая спроса и монополия
- •23.3. Ценообразование по принципу "издержки плюс накидка"
- •23.4. Неэффективность монополии
- •23.5. Потеря мертвого груза от монополии
- •23.6. Естественная монополия
- •23.7. Что порождает монополии?
- •Глава 25 рынки факторов
- •25.1. Монополия на рынке выпускаемой продукции
- •25.2. Монопсония
- •25.3. Монополии — поставщики факторов производства и монополии — производители готовой продукции
- •Глава 26 олигополия
- •26.1. Выбор стратегии
- •26.2. Лидерство по объему выпуска
- •26.3. Лидерство в ценообразовании
- •26.4. Сравнение лидерства в ценообразовании и лидерства по объему выпуска
- •26.5. Одновременное установление объемов выпуска
- •26.6. Пример равновесия по Курно
- •26.7. Установление равновесия
- •26.8. Равновесие по Курно для случая многих фирм
- •26.9. Одновременное установление цен
- •26.10. Сговор
- •26.11. Сравнение решений
- •Глава 27 теория игр
- •27.1. Платежная матрица игры
- •27.2. Равновесие по Нэшу
- •27.3. Смешанные стратегии
- •27.4. Дилемма заключенного
- •27.5. Повторяющиеся игры
- •27.6. Как упрочить картель
- •27.7. Последовательные игры
- •27.8. Игра "угроза вхождению"
- •Глава 29 производство
- •29.1. Экономика Робинзона Крузо
- •29.2. "Крузо, Инк."
- •29.3. Фирма
- •29.4. Задача Робинзона
- •29.5. Сведение воедино двух моделей
- •29.6. Различные технологии
- •29.7. Производство и первая теорема экономики благосостояния
- •29.8. Производство и вторая теорема экономики благосостояния
- •29.9. Производственные возможности
- •29.10. Сравнительные преимущества
- •29.11. Эффективность по Парето
- •29.12. "Жертвы кораблекрушения, Инк."
- •29.13. Робинзон и Пятница в роли потребителей
- •29.14. Децентрализованное распределение ресурсов
- •Глава 30
- •Экономическая
- •Благосостояния
- •30.1. Агрегирование предпочтений
- •30.2. Функции общественного благосостояния
- •30.3. Максимизация благосостояния
- •30.4. Индивидуалистические функции общественного благосостояния
- •30.5. Справедливые распределения
- •30.6. Зависть и справедливость
- •Глава 31 внешние эффекты (экстерналии)
- •31.1. Курильщики и некурящие
- •31.2. Квазилинейные предпочтения и теорема Коуза
- •31.3. Внешние эффекты, связанные с производством
- •31.4. Интерпретация условий эффективности по Парето
- •31.5. Рыночные сигналы
- •31.6. Трагедия общин
- •31.7. Загрязнение окружающей среды автомобилями
- •Глава 32 право и экономический анализ
- •32.1. Преступление и наказание
- •32.2. Оговорки
- •32.3. Закон об ответственности
- •32.4. Несчастные случаи с двусторонней ответственностью
- •32.5. Возмещение ущерба в тройном размере как пункт антитрестовского законодательства
- •32.6. Какая из моделей верна?
- •Глава 33 информационные технологии
- •33.1. Сетевые внешние эффекты
- •33.2. Рынки с сетевыми внешними эффектами
- •33.3. Рыночная динамика
- •33.4. Значение сетевых внешних эффектов
- •33.5. Копирование интеллектуальной собственности
- •33.6. Оптимальный штраф
- •0,01F (1 — 0,01)0,02kyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy.
- •33.7. Приобретение и использование интеллектуальной собственности на паевых началах
- •Глава 34 общественные блага
- •34.1. Когда следует предоставлять общественное благо?
- •34.2. Частное предоставление общественного блага
- •34.3. Проблема безбилетника
- •34.4. Различные типы общественных благ
- •34.5. Квазилинейные предпочтения и общественные блага
- •34.6. Задача для безбилетника
- •34.7. Сопоставление с распределением частных благ
- •34.8. Голосование
- •34.9. Обнаружение спроса
- •34.10. Проблемы, связанные с налогом Кларка
- •Глава 35 асимметричная информация
- •35.1. Рынок "лимонов"
- •35.2. Выбор качества
- •35.3. Неблагоприятный отбор
- •35.4. Моральный ущерб
- •35.5. Моральный ущерб и неблагоприятный отбор
- •35.6. Сигнализирование
- •35.7. Стимулы
- •35.8. Асимметричная информация
- •Глава 28 обмен
- •28.1. Ящик Эджуорта
- •28.2. Обменная сделка
- •28.3. Распределения, эффективные по Парето
- •28.4. Рыночный обмен
- •28.5. Алгебра равновесия
- •28.6. Закон Вальраса
- •28.7. Относительные цены
- •28.8. Существование равновесия
- •28.9. Равновесие и эффективность
- •28.10. Алгебра эффективности
- •28.11. Эффективность и равновесие
- •28.12. Значение первой теоремы экономики благосостояния
- •28.13. Значение второй теоремы экономики благосостояния
- •Глава 24 поведение монополии
- •24.1. Ценовая дискриминация
- •24.2. Ценовая дискриминация первой степени
- •24.3. Ценовая дискриминация второй степени
- •24.4. Ценовая дискриминация третьей степени
- •24.5. Продажа товаров наборами
- •24.6. Двойной тариф
- •24.7. Монополистическая конкуренция
- •24.8. Дифференциация продукта
19.5. Постоянные и квазипостоянные издержки
В гл. 18 мы провели различие между постоянными и квазипостоянными факторами. Постоянные факторы — это факторы, которые должны оплачиваться независимо от того, производится какой-либо выпуск или нет. Квазипостоянные факторы должны оплачиваться только в случае, если фирма решает производить положительный объем выпуска.
Естественно было бы подобным же образом определить постоянные и квазипостоянные издержки. Постоянные издержки — это издержки, связываемые с постоянными факторами: они не зависят от объема выпуска и, в частности, должны оплачиваться независимо от того, производит фирма какой-то выпуск или нет. Квазипостоянные издержки — это издержки, которые тоже не зависят от объема выпуска, но должны оплачиваться только при условии производства фирмой положительного объема выпуска.
В длительном периоде по определению постоянных издержек не бывает, однако вполне могут существовать квазипостоянные издержки. Если началу производства какого-то объема выпуска должна предшествовать затрата какой-то постоянной суммы, то можно говорить о наличии квазипостоянных издержек.
19.6. Невозвратные издержки
Другая разновидность постоянных издержек — невозвратные издержки. Смысл этого понятия лучше всего объяснить на примере. Предположим, что вы решили снять офис в аренду на год. Ежемесячная арендная плата, которую вы обязались платить, есть постоянные издержки, поскольку вы обязаны выплачивать ее независимо от производимого вами объема выпуска. Теперь предположим, что вы решаете обновить офис, перекрасив его и купив мебель. Издержки на краску — это постоянные издержки, но это также и невозвратные издержки, поскольку это выплаты, которые произведены и не могут быть возмещены. С другой стороны, издержки на покупку мебели — не совсем невозвратные, поскольку вы можете перепродать мебель, когда она больше не будет вам нужна. Невозвратной является только разность между стоимостью новой и подержанной мебели.
Чтобы объяснить это более детально, предположим, что вы берете взаймы 20 000 долл. в начале года, скажем, под 10% годовых. Вы подписываете договор об аренде офиса и платите 12000 долл. арендной платы вперед за следующий год 6000 долл. вы тратите на мебель для офиса и 2000 долл. на окраску офиса. В конце года вы возвращаете ссуду в 20000 долл. плюс 2000 долл. процентных платежей и продаете бывшую в употреблении офисную мебель за 5000 долл.
Ваши общие невозвратные издержки включают 12000 долл. арендной платы, 2000 долл. процентных платежей, 2000 долл. на краску, но только 1000 долл. на мебель, поскольку 5000 долл. первоначальных расходов на мебель возместимы.
Разность между невозвратными издержками и возместимыми издержками может быть довольно значительной. Расходы в размере 100 000 долл. на покупку пяти легких грузовиков представляются кучей денег, но если впоследствии они могут быть проданы на рынке подержанных грузовиков за 80 000 долл., фактические невозвратные издержки составят лишь 20 000 долл. Расходы же в 100 000 долл. на приобретение изготовленного по заказу пресса для штамповки каких-то уникальных деталей, при перепродаже которого можно выручить лишь нулевую стоимость, — дело совсем другое; в этом случае все расходы являются невозвратными.
Лучший способ правильно решать эти вопросы — это учитывать все расходы в виде потоков, т.е. спрашивать себя, во сколько обходится ведение бизнеса в течение года. При таком способе учета существует меньшая вероятность забыть учесть стоимость, полученную в результате перепродажи капитального оборудования, и большая вероятность четкого проведения различия между невозвратными издержками и возместимыми издержками.
Краткие выводы
Функция издержек c(w1, w2, yAAAAAAAAAAAAAAAAAAAAAAAAAAAA)BBBBBBBBBBBBBBBBBBBBBBBBBBBB показывает минимальные издержки произ-водства данного объема выпуска при заданных ценах факторов.
Поведение, направленное на минимизацию издержек, налагает на выбор фирм заметные ограничения. В частности, функции условного спроса на факторы должны иметь отрицательный наклон.
Существует тесная взаимосвязь между отдачей от масштаба, демон-стрируемой данной технологией, и поведением функции издержек. Воз-растающая отдача от масштаба подразумевает убывание средних издержек, убывающая отдача от масштаба подразумевает возрастание средних издер-жек и постоянная отдача от масштаба подразумевает постоянные средние издержки.
Невозвратные издержки — это издержки, которые не могут быть возмещены.
ВОПРОСЫ ДЛЯ ПОВТОРЕНИЯ
Докажите, что максимизирующая прибыль фирма будет всегда миними-зировать издержки.
Если фирма производит в точке, где MP1/w1 > MP2/w2CCCCCCCCCCCCCCCCCCCCCCCCCCCC, то что она может сделать, чтобы сократить издержки, оставив при этом выпуск без изме-нений?
Предположим, что минимизирующая издержки фирма использует два фактора, являющихся совершенными субститутами. Как будут выглядеть функции условного спроса на факторы, если цены обоих факторов оди-наковы?
Цена бумаги, используемой минимизирующей издержки фирмой, растет. Фирма отвечает на это изменение цены изменением спроса на некоторые факторы производства, но сохраняет выпуск постоянным. Что произойдет с количеством бумаги, используемым фирмой ?
Какое неравенство, характеризующее изменения цен факторов (DwiDDDDDDDDDDDDDDDDDDDDDDDDDDDD) и спроса на факторы (DxiEEEEEEEEEEEEEEEEEEEEEEEEEEEE) при заданном объеме выпуска, следует из теории выявленной минимизации издержек для случая использования фирмой n факторов производства (n > 2)?
ПРИЛОЖЕНИЕ
Обратимся к рассмотрению предложенной в тексте задачи минимизации издержек, используя технику оптимизации, с которой вы познакомились в гл. 5. Речь идет о задаче минимизации издержек, имеющей вид:
min w1x1 + w2x2
x1, x2FFFFFFFFFFFFFFFFFFFFFFFFFFFF
при f(x1, x2)709 = yHHHHHHHHHHHHHHHHHHHHHHHHHHHH.
Вспомним, что для решения такого рода задач мы пользовались несколькими техническими приемами. Одним из них была подстановка ограничения в целевую функцию. Этим методом по-прежнему можно пользоваться, когда мы имеем дело с функцией конкретного вида f(x1, x2)711JJJJJJJJJJJJJJJJJJJJJJJJJJJJ, однако, в общем случае он имеет ограниченное применение.
Вторым методом был метод множителей Лагранжа, и он прекрасно подходит для решения рассматриваемой задачи. Чтобы применить этот метод, мы строим функцию Лагранжа
L = w1x1 + w2x2 — (f(x1, x2) — y)
и берем ее производные по x1, x2 и KKKKKKKKKKKKKKKKKKKKKKKKKKKK. Это дает нам условия первого порядка:
w1
—
=
0,LLLLLLLLLLLLLLLLLLLLLLLLLLLL
w2
—
=
0,MMMMMMMMMMMMMMMMMMMMMMMMMMMM
f(x1, x2)716 — y = 0OOOOOOOOOOOOOOOOOOOOOOOOOOOO. PPPPPPPPPPPPPPPPPPPPPPPPPPPP
Последнее условие есть не что иное, как ограничение. Мы можем преобразовать первые два уравнения и поделить первое уравнение на второе, получив при этом
QQQQQQQQQQQQQQQQQQQQQQQQQQQQ.
Обратите внимание на то, что это то же самое условие первого порядка, которое мы вывели в тексте: технологическая норма замещения должна равняться отношению цен факторов.
Применим этот метод к производственной функции Кобба—Дугласа:
f(x1,
x2)720
=
SSSSSSSSSSSSSSSSSSSSSSSSSSSS.
Тогда задача минимизации издержек принимает вид
min w1x1 + w2x2
x1, x2TTTTTTTTTTTTTTTTTTTTTTTTTTTT
при
=
yUUUUUUUUUUUUUUUUUUUUUUUUUUUU.
Перед нами конкретный вид задачи для функции особого вида, и мы можем решить эту задачу, используя либо метод подстановки, либо метод Лагранжа. При методе подстановки следует вначале выразить из ограничения x2VVVVVVVVVVVVVVVVVVVVVVVVVVVV как функцию x1WWWWWWWWWWWWWWWWWWWWWWWWWWWW:
x2XXXXXXXXXXXXXXXXXXXXXXXXXXXX
=
YYYYYYYYYYYYYYYYYYYYYYYYYYYY,
а затем подставить полученное выражение в целевую функцию, чтобы перейти тем самым к задаче минимизации без ограничений
min w1x1 + w2 .
x1 ZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
Мы могли бы, как обычно, взять производную этого выражения по x1 и приравнять ее к нулю. Можно решить полученное в результате этого уравнение, получив x1 как функцию w1, w2AAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBB и y, чтобы получить функцию условного спроса на x1CCCCCCCCCCCCCCCCCCCCCCCCCCCCC. Сделать это нетрудно, но алгебра здесь довольно запутанная, и мы не будем выписывать все детали решения задачи указанным методом.
Мы, однако, решим данную задачу методом Лагранжа. Три условия первого порядка представляют собой
w1
=
DDDDDDDDDDDDDDDDDDDDDDDDDDDDD
w2
=
EEEEEEEEEEEEEEEEEEEEEEEEEEEEE
y
=
FFFFFFFFFFFFFFFFFFFFFFFFFFFFF.
Умножим первое уравнение на x1 и второе уравнение на x2GGGGGGGGGGGGGGGGGGGGGGGGGGGGG, получив при этом
w1x1
=
= ay
HHHHHHHHHHHHHHHHHHHHHHHHHHHHH
w2x2
=
=
byIIIIIIIIIIIIIIIIIIIIIIIIIIIII,
так что
x1
=
(19.6)
x2
=
.
(19.7)
Теперь мы воспользуемся третьим уравнением, чтобы получить выражение для JJJJJJJJJJJJJJJJJJJJJJJJJJJJJ.
Подставляя в условие третьего порядка решения для x1 и x2KKKKKKKKKKKKKKKKKKKKKKKKKKKKK, получаем
=
y.
Мы можем найти из этого уравнения LLLLLLLLLLLLLLLLLLLLLLLLLLLLL, получив довольно внушительное выражение
=
,
которое наряду с уравнениями (19.6) и (19.7) дает нам окончательные решения для x1 и x2MMMMMMMMMMMMMMMMMMMMMMMMMMMMM. Эти функции спроса на факторы будут иметь вид:
x1(w1,
w2,
yNNNNNNNNNNNNNNNNNNNNNNNNNNNNN)
=
x2(w1,
w2,
yOOOOOOOOOOOOOOOOOOOOOOOOOOOOO)
=
.
Функцию издержек можно найти, записав выражения для издержек при выборе фирмой комбинаций факторов, минимизирующих издержки. Иными словами,
c(w1, w2, yPPPPPPPPPPPPPPPPPPPPPPPPPPPPP) = w1x1(w1, w2, yQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ) + w2x2(w1, w2, yRRRRRRRRRRRRRRRRRRRRRRRRRRRRR).
В результате ряда утомительных алгебраических преобразований мы получаем
c(w1,
w2,
ySSSSSSSSSSSSSSSSSSSSSSSSSSSSS)
=
.
(Не беспокойтесь, этой формулы на итоговом экзамене не будет. Она приведена только для того, чтобы продемонстрировать, как мы получаем точное решение задачи минимизации издержек, применяя метод множителей Лагранжа.)
Обратите внимание на то что с ростом выпуска, издержки будут расти быстрее, чем при линейной зависимости, с той же скоростью, или медленнее, в зависимости от того, является ли a + b величиной меньшей, равной или большей 1. Это имеет смысл, поскольку в зависимости от величины a + b технология Кобба—Дугласа характеризуется убывающей, постоянной или возрастающей отдачей от масштаба.
