- •Глава 7 выявленные предпочтения
- •7.1. Идея выявленных предпочтений
- •7.2. От выявленных предпочтений к предпочтениям
- •7.3. Реконструирование предпочтений
- •7.4 Слабая аксиома выявленных предпочтений
- •7.6 Сильная аксиома выявленных предпочтений (Strong Axiom of Revealed Preference — sarp)
- •7.8. Индексы
- •7.9. Индексы цен
- •Глава 8 уравнение слуцкого
- •8.1. Эффект замещения
- •8.2. Эффект дохода
- •8.3. Знак эффекта замещения
- •8.4. Общее изменение спроса
- •8.5. Отношения изменений
- •8.6. Закон спроса
- •8.7. Примеры эффектов дохода и замещения
- •8.8. Другой эффект замещения
- •8.9 Кривые компенсированного спроса
- •Глава 9 купля и продажа
- •9.1. Чистый спрос и валовой спрос
- •9.2. Бюджетное ограничение
- •9.3. Изменение начального запаса
- •9.4. Изменения цен
- •9.5. Кривые "цена—потребление" и кривые спроса
- •9.6. И снова уравнение Слуцкого
- •XXXXXXXXX.
- •9.7. Применение уравнения Слуцкого
- •9.8. Предложение труда
- •9.9. Сравнительная статика предложения труда
- •Глава 10 межвременной выбор
- •10.1 Бюджетное ограничение
- •10.2 Предпочтения в отношении потребления
- •10.3 Сравнительная статика
- •10.4 Уравнение Слуцкого и межвременной выбор
- •10.5 Инфляция
- •10.6 Текущая стоимость: более пристальный взгляд
- •10.7 Анализ текущей стоимости для нескольких периодов
- •10.8 Применение текущей стоимости
- •10.9 Облигации
- •10.10 Налоги
- •10.11 Выбор ставки процента
- •Глава 11
- •Глава 12 неопределенность
- •12.1 Обусловленное потребление
- •12.2 Функции полезности и вероятности
- •12.3 Ожидаемая полезность
- •12.4 В чем рациональность представления предпочтений в виде ожидаемой полезности
- •12.5 Нерасположенность к риску
- •12.6 Диверсификация
- •12.7 Рассредоточение риска
- •12.8 Роль фондового рынка
- •Глава 13 рисковые акты
- •13.1 Полезность как функция средней и дисперсии относительно нее
- •13.2 Измерение риска
- •13.3 Равновесие на рынке рисковых активов
- •13.4 Как происходит выравнивание доходов
- •Глава 14 излишек потребителя
- •14.1 Спрос на дискретный товар
- •14.2 Построение функции полезности на основе функции спроса
- •14.3 Другие интерпретации излишка потребителя
- •14.4 От излишка потребителя к излишку потребителей
- •14.6 Квазилинейная функция полезности
- •14.7 Интерпретация изменения излишка потребителя
- •14.8 Компенсирующая и эквивалентная вариации дохода
- •14.9 Излишек производителя
- •14.10 Подсчет выигрышей и потерь
- •Глава 15 рыночный спрос
- •15.1. От индивидуального спроса к рыночному
- •15.2. Обратная функция спроса
- •15.3. Дискретные товары
- •15.4. Экстенсивный и интенсивный пределы корректировки спроса
- •15.5. Эластичность
- •15.6. Эластичность и спрос
- •15.7. Эластичность и общий доход
- •15.8. Кривые спроса с постоянной эластичностью
- •15.9. Эластичность и предельный доход
- •15.10. Кривые предельного дохода
- •15.11. Эластичность спроса по доходу
- •Глава 16 равновесие
- •16.1. Предложение
- •16.2. Рыночное равновесие
- •16.3. Два особых случая
- •16.4. Обратные кривые спроса и предложения
- •16.5. Сравнительная статика
- •16.6. Налоги
- •16.7. Перекладывание налога
- •16.8. Потеря мертвого груза в результате введения налога
- •16.9. Эффективность по Парето
- •Глава 17 технология
- •17.1 Ресурсы и выпуск
- •17.2. Описание технологических ограничений
- •17.3. Примеры технологии
- •17.4. Свойства технологии
- •17.5. Предельный продукт
- •17.6. Технологическая норма замещения
- •17.7. Убывание предельного продукта
- •17.8. Убывание технологической нормы замещения
- •17.9. Короткий и длительный периоды
- •17.10. Отдача от масштаба
- •Глава 18 максимизация прибыли
- •18.1. Прибыль
- •18.2. Организационные формы фирм
- •18.3. Прибыль и рыночная стоимость фирмы
- •18.4. Постоянные и переменные факторы
- •18.5. Максимизация прибыли в коротком периоде
- •18.6. Сравнительная статика
- •18.7. Максимизация прибыли в длительном периоде
- •18.8. Обратные кривые спроса на факторы
- •18.9. Максимизация прибыли и отдача от масштаба
- •18.10. Выявленная прибыльность
- •18.11. Минимизация издержек
- •Глава 19 минимизация издержек
- •19.1. Минимизация издержек
- •19.2. Выявленная минимизация издержек
- •VVVVVVVVVVVVVVVVVVVVVVVVVV.
- •19.3. Отдача от масштаба и функция издержек
- •19.4. Долгосрочные и краткосрочные издержки
- •19.5. Постоянные и квазипостоянные издержки
- •19.6. Невозвратные издержки
- •Глава 20 кривые издержек
- •20.1. Средние издержки
- •20.2. Предельные издержки
- •20.3. Предельные издержки и переменные издержки
- •20.4. Долгосрочные издержки
- •20.5. Дискретные уровни размера завода
- •20.6. Долгосрочные предельные издержки
- •Глава 21 предложение фирмы
- •21.1. Рыночная среда
- •21.2. Чистая конкуренция
- •21.3. Решение о предложении, принимаемое конкурентной фирмой
- •21.4. Исключение
- •21.5. Другое исключение
- •21.6. Обратная функция предложения
- •21.7. Прибыль и излишек производителя
- •21.8. Кривая долгосрочного предложения фирмы
- •21.9. Долгосрочные постоянные средние издержки
- •Глава 22 предложение отрасли
- •22.1. Краткосрочное предложение отрасли
- •22.2. Равновесие отрасли в коротком периоде
- •22.3. Равновесие отрасли в длительном периоде
- •22.4. Кривая долгосрочного предложения
- •22.5. Смысл нулевой прибыли
- •22.6. Постоянные факторы производства и экономическая рента
- •22.7. Экономическая рента
- •22.8. Арендные ставки и цены
- •22.9. Политика в отношении ренты
- •22.10. Энергетическая политика
- •Глава 23 монополия
- •23.1. Максимизация прибыли
- •23.2. Линейная кривая спроса и монополия
- •23.3. Ценообразование по принципу "издержки плюс накидка"
- •23.4. Неэффективность монополии
- •23.5. Потеря мертвого груза от монополии
- •23.6. Естественная монополия
- •23.7. Что порождает монополии?
- •Глава 25 рынки факторов
- •25.1. Монополия на рынке выпускаемой продукции
- •25.2. Монопсония
- •25.3. Монополии — поставщики факторов производства и монополии — производители готовой продукции
- •Глава 26 олигополия
- •26.1. Выбор стратегии
- •26.2. Лидерство по объему выпуска
- •26.3. Лидерство в ценообразовании
- •26.4. Сравнение лидерства в ценообразовании и лидерства по объему выпуска
- •26.5. Одновременное установление объемов выпуска
- •26.6. Пример равновесия по Курно
- •26.7. Установление равновесия
- •26.8. Равновесие по Курно для случая многих фирм
- •26.9. Одновременное установление цен
- •26.10. Сговор
- •26.11. Сравнение решений
- •Глава 27 теория игр
- •27.1. Платежная матрица игры
- •27.2. Равновесие по Нэшу
- •27.3. Смешанные стратегии
- •27.4. Дилемма заключенного
- •27.5. Повторяющиеся игры
- •27.6. Как упрочить картель
- •27.7. Последовательные игры
- •27.8. Игра "угроза вхождению"
- •Глава 29 производство
- •29.1. Экономика Робинзона Крузо
- •29.2. "Крузо, Инк."
- •29.3. Фирма
- •29.4. Задача Робинзона
- •29.5. Сведение воедино двух моделей
- •29.6. Различные технологии
- •29.7. Производство и первая теорема экономики благосостояния
- •29.8. Производство и вторая теорема экономики благосостояния
- •29.9. Производственные возможности
- •29.10. Сравнительные преимущества
- •29.11. Эффективность по Парето
- •29.12. "Жертвы кораблекрушения, Инк."
- •29.13. Робинзон и Пятница в роли потребителей
- •29.14. Децентрализованное распределение ресурсов
- •Глава 30
- •Экономическая
- •Благосостояния
- •30.1. Агрегирование предпочтений
- •30.2. Функции общественного благосостояния
- •30.3. Максимизация благосостояния
- •30.4. Индивидуалистические функции общественного благосостояния
- •30.5. Справедливые распределения
- •30.6. Зависть и справедливость
- •Глава 31 внешние эффекты (экстерналии)
- •31.1. Курильщики и некурящие
- •31.2. Квазилинейные предпочтения и теорема Коуза
- •31.3. Внешние эффекты, связанные с производством
- •31.4. Интерпретация условий эффективности по Парето
- •31.5. Рыночные сигналы
- •31.6. Трагедия общин
- •31.7. Загрязнение окружающей среды автомобилями
- •Глава 32 право и экономический анализ
- •32.1. Преступление и наказание
- •32.2. Оговорки
- •32.3. Закон об ответственности
- •32.4. Несчастные случаи с двусторонней ответственностью
- •32.5. Возмещение ущерба в тройном размере как пункт антитрестовского законодательства
- •32.6. Какая из моделей верна?
- •Глава 33 информационные технологии
- •33.1. Сетевые внешние эффекты
- •33.2. Рынки с сетевыми внешними эффектами
- •33.3. Рыночная динамика
- •33.4. Значение сетевых внешних эффектов
- •33.5. Копирование интеллектуальной собственности
- •33.6. Оптимальный штраф
- •0,01F (1 — 0,01)0,02kyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy.
- •33.7. Приобретение и использование интеллектуальной собственности на паевых началах
- •Глава 34 общественные блага
- •34.1. Когда следует предоставлять общественное благо?
- •34.2. Частное предоставление общественного блага
- •34.3. Проблема безбилетника
- •34.4. Различные типы общественных благ
- •34.5. Квазилинейные предпочтения и общественные блага
- •34.6. Задача для безбилетника
- •34.7. Сопоставление с распределением частных благ
- •34.8. Голосование
- •34.9. Обнаружение спроса
- •34.10. Проблемы, связанные с налогом Кларка
- •Глава 35 асимметричная информация
- •35.1. Рынок "лимонов"
- •35.2. Выбор качества
- •35.3. Неблагоприятный отбор
- •35.4. Моральный ущерб
- •35.5. Моральный ущерб и неблагоприятный отбор
- •35.6. Сигнализирование
- •35.7. Стимулы
- •35.8. Асимметричная информация
- •Глава 28 обмен
- •28.1. Ящик Эджуорта
- •28.2. Обменная сделка
- •28.3. Распределения, эффективные по Парето
- •28.4. Рыночный обмен
- •28.5. Алгебра равновесия
- •28.6. Закон Вальраса
- •28.7. Относительные цены
- •28.8. Существование равновесия
- •28.9. Равновесие и эффективность
- •28.10. Алгебра эффективности
- •28.11. Эффективность и равновесие
- •28.12. Значение первой теоремы экономики благосостояния
- •28.13. Значение второй теоремы экономики благосостояния
- •Глава 24 поведение монополии
- •24.1. Ценовая дискриминация
- •24.2. Ценовая дискриминация первой степени
- •24.3. Ценовая дискриминация второй степени
- •24.4. Ценовая дискриминация третьей степени
- •24.5. Продажа товаров наборами
- •24.6. Двойной тариф
- •24.7. Монополистическая конкуренция
- •24.8. Дифференциация продукта
Глава 13 рисковые акты
В предыдущей главе нами были изучены модель поведения индивида в условиях неопределенности и роль двух экономических институтов, помогающих отчасти справиться с неопределенностью: рынков страховых услуг и фондового рынка. В настоящей главе мы продолжим исследование роли фондового рынка в размещении риска. В этих целях удобно рассмотреть упрощенную модель поведения в условиях неопределенности.
13.1 Полезность как функция средней и дисперсии относительно нее
В предыдущей главе мы исследовали модель выбора в условиях неопределенности, построенную с использованием функции ожидаемой полезности. Другой подход к задачам выбора в условиях неопределенности состоит в том, чтобы описать распределения богатства по вероятностям, являющиеся объектами выбора, с помощью нескольких параметров и придумать функцию полезности, которая бы определялась указанными параметрами. Наиболее известный пример реализации такого подхода - модель средней и дисперсии относительно нее. Вместо того, чтобы считать, что предпочтения потребителя зависят от полного распределения вероятностей его богатства по всем возможным исходам, мы предполагаем, что его предпочтения могут быть должным образом описаны с помощью всего лишь нескольких статистических выводов в отношении распределения вероятностей его богатства.
Допустим,
что случайная переменная w
принимает значения
для s=1,...,S
с вероятностью
.
Средняя распределения вероятностей
есть просто его среднее значение:
.
Это - формула среднего арифметического взвешенного: возьмите каждый из исходов, взвесьте его вероятностью того, что он будет иметь место, и суммируйте полученные результаты по всем исходам. 8
Дисперсия
распределения вероятностей богатства
есть среднее значение величины
:
.
Дисперсия
измеряет "разброс" распределения
и является подходящей мерой степени
имеющегося риска. Тесно связана с ней
такая мера, как стандартное отклонение,
обозначаемое
,
которое является квадратным корнем из
дисперсии:
.
Средняя распределения вероятностей измеряет его среднее значение - то, вокруг которого сосредоточено распределение. Дисперсия распределения измеряет "разброс" распределения - то, каким образом оно рассеивается вокруг средней. На рис. 13.1 вы можете увидеть графическое представление распределений вероятностей с различными средними и дисперсиями.
В
модели средней и дисперсии относительно
нее предполагается, что полезность
распределения вероятностей, приносящего
инвестору богатство
с вероятностью
,
можно выразить как функцию средней
данного распределения и дисперсии
относительно этой средней,
.
Или, если это более удобно, полезность
можно выразить как функцию средней и
стандартного отклонения,
.
Поскольку и дисперсия, и стандартное
отклонение есть меры степени риска,
характеризующей распределение
вероятностей, можно считать полезность
зависящей от любого из этих двух
показателей.
Эту модель можно рассматривать как упрощение модели ожидаемой полезности, описанной в предыдущей главе. Если существует возможность полностью охарактеризовать варианты производимого выбора с помощью соответствующей им средней и дисперсии относительно нее, то на основе функции полезности для средней и дисперсии можно ранжировать варианты выбора таким же образом, как и на основе функции ожидаемой полезности. Более того, даже если распределения вероятностей не могут быть полностью охарактеризованы их средними и дисперсиями, модель средней и дисперсии относительно нее может служить разумным приближением модели ожидаемой полезности.
Примем естественным образом напрашивающуюся предпосылку о том, что, при прочих равных условиях, более высокий ожидаемый доход - это хорошо, а более высокая дисперсия - это плохо. Это - лишь другой способ сформулировать предпосылку о том, что люди обычно не расположены к риску.
Применим
модель средней и дисперсии относительно
нее к анализу простой задачи на структуру
портфеля активов. Предположим. что у
вас имеется возможность произвести
инвестиции в два различных актива. Один
из них, безрисковый актив, всегда приносит
постоянную норму дохода,
.
Этот актив - нечто вроде казначейского
векселя, приносящего твердую ставку
процента, что бы ни произошло.
Рис.13.1 Средняя и дисперсия относительно нее. Средняя распределения вероятностей, изображенного на рис.A, положительна, а средняя распределения вероятностей, изображенного на рис.B, отрицательна. Распределение на рис.A более "растянуто", чем распределение на рис.B, а это означает, что оно характеризуется большей дисперсией.
Другой
актив - это рисковый актив. Представьте
себе, что этот актив - вложение в крупный
взаимный фонд, занимающийся покупкой
акций. Если конъюнктура фондового рынка
высокая, ваше вложение приносит высокий
доход. Если конъюнктура фондового рынке
низкая, ваше вложение приносит низкий
доход. Обозначим через
доход на этот актив при исходе s,
а через
- вероятность наступления данного
исхода.
Через
мы обозначим ожидаемый доход на рисковый
актив, а через
- стандартное отклонение дохода
на этот актив.
Конечно, вам не надо выбирать один из этих двух активов; как правило, у вас есть возможность распределить свое богатство между вложениями в оба актива. Если доля вашего богатства, вложенная в рисковый актив, равна x, а доля вашего богатства. вложенная в безрисковый актив, равна (1-x), то ожидаемый доход на ваш портфель активов будет задан формулой
.
Поскольку
,
мы получаем
.
Таким образом, ожидаемый доход на портфель из двух активов есть среднее арифметическое взвешенное двух ожидаемых доходов.
Рис.13.2 Риск и доход. Бюджетная линия показывает издержки получения большего ожидаемого дохода, выраженные через возросшее стандартное отклонение дохода. В точке оптимального выбора кривая безразличия должна касаться этой бюджетной линии.
Дисперсия вашего портфельного дохода задана формулой
.
После
подстановки в эту формулу полученного
нами выражения для
,
она принимает вид
.
Следовательно, стандартное отклонение портфельного дохода задано формулой
.
Естественно
предположить, что
,
так как инвестор, не расположенный к
риску, никогда не будет держать в своем
портфеле рисковый актив, если он приносит
более низкий ожидаемый доход, чем
безрисковый актив. Отсюда следует, что
если вы предпочтете направить большую
долю своего богатства на покупку
рискового актива, то получите более
высокий ожидаемый доход, но также будете
нести больший риск. Это изображено на
рис.13.2.
Выбрав
x=1,
вы вложите все свои деньги в рисковый
актив и получите ожидаемый доход и
стандартное отклонение вида (
).
Выбрав x=0,
ы вложите все свое богатство в надежный
актив и получите ожидаемый доход и
стандартное отклонение вида (
).
Выбрав x
где-то между 0 и 1, вы окажетесь, в итоге,
где-то посередине линии, соединяющей
две указанных точки. Эта линия и дает
нам бюджетную линию, описывающую
предлагаемый рынком выбор между риском
и доходом.
Поскольку мы придерживаемся предпосылки о том, что предпочтения людей зависят лишь от средней и дисперсии их богатства, мы можем нарисовать кривые безразличия, иллюстрирующие предпочтения индивида в отношении риска и дохода. Если люди не расположены к риску, то более высокий ожидаемый доход повышает их благосостояние, а более высокое стандартное отклонение его понижает. Это означает, что стандартное отклонение есть "антиблаго". Отсюда следует, что кривые безразличия будут иметь положительный наклон, как показано на рис.13.2.
В точке оптимального выбора риска и дохода наклон кривой безразличия на рис.13.2 должен равняться наклону бюджетной линии. Мы могли бы назвать этот наклон ценой риска, так как он измеряет пропорцию, в которой могут обмениваться риск и доход при выборе оптимальной структуры портфеля. Как показывает внимательный взгляд на рис.13.2, цена риска задается формулой
(13.1)
Итак, точку оптимального распределения портфеля между надежным активом и рисковым активом можно охарактеризовать условием соблюдения равенства предельной нормы замещения между дохода риском цене риска:
(13.2)
Предположим теперь, что существует много индивидов, производящих выбор между двумя указанными активами. Для каждого из них предельная норма замещения должна равняться цене риска. Следовательно, в равновесии MRS у всех индивидов будут равны: если предоставить людям достаточно широкие возможности для торговли рисками, то равновесная цена риска для всех индивидов будет одинаковой. Риск в этом отношении ничем не отличается от других товаров.
Можно использовать идеи, развитые нами в предыдущих главах, для исследования того, какие изменения происходят с оптимальным выбором при изменении параметров задачи. Применительно к данной модели можно использовать все, что было сказано о нормальных товарах, товарах низшей категории, выявленных предпочтениях и т.д.
Например,
предположим, что индивиду предлагается
выбрать новый рисковый актив y,
имеющий, скажем, среднее значение дохода
и стандартное отклонение
,
как показано на рис.13.3.
Который из двух активов выберет потребитель, если ему предложат выбор между вложением в x и вложением в y? На рис.13.3 изображены и исходное, и новое бюджетные множества. Обратите внимание на то, что любая комбинация риска и дохода, которую можно было выбрать при исходном бюджетном множестве, может быть выбрана и при новом бюджетном множестве, так как новое бюджетное множество включает в себя старое. Следовательно, инвестировать в актив y и в безрисковый актив определенно лучше, чем инвестировать в x и в безрисковый актив, так как, в конечном счете. потребитель сможет выбрать лучший портфель.
Очень важную роль в этих рассуждениях играет тот факт, что потребитель может выбирать, сколько он хочет иметь рискового актива. Если бы речь шла о выборе " все или ничего", при котором потребителя вынуждали бы вложить все деньги либо в x, либо в y, исход выбора был бы совершенно другим. В примере, изображенном на рис.13.3, потребитель предпочел бы вложению всех денег в y их вложение в x, поскольку x лежит на более высокой кривой безразличия, чем y. Но если бы он мог комбинировать рисковый актив с безрисковым активом, он всегда предпочел бы комбинировать безрисковый актив с y, а не с x.
Рис.13.3 Предпочтения в отношении риска и дохода. Актив с комбинацией риска и дохода y предпочитается активу с комбинацией риска и дохода x.
