- •Глава 7 выявленные предпочтения
- •7.1. Идея выявленных предпочтений
- •7.2. От выявленных предпочтений к предпочтениям
- •7.3. Реконструирование предпочтений
- •7.4 Слабая аксиома выявленных предпочтений
- •7.6 Сильная аксиома выявленных предпочтений (Strong Axiom of Revealed Preference — sarp)
- •7.8. Индексы
- •7.9. Индексы цен
- •Глава 8 уравнение слуцкого
- •8.1. Эффект замещения
- •8.2. Эффект дохода
- •8.3. Знак эффекта замещения
- •8.4. Общее изменение спроса
- •8.5. Отношения изменений
- •8.6. Закон спроса
- •8.7. Примеры эффектов дохода и замещения
- •8.8. Другой эффект замещения
- •8.9 Кривые компенсированного спроса
- •Глава 9 купля и продажа
- •9.1. Чистый спрос и валовой спрос
- •9.2. Бюджетное ограничение
- •9.3. Изменение начального запаса
- •9.4. Изменения цен
- •9.5. Кривые "цена—потребление" и кривые спроса
- •9.6. И снова уравнение Слуцкого
- •XXXXXXXXX.
- •9.7. Применение уравнения Слуцкого
- •9.8. Предложение труда
- •9.9. Сравнительная статика предложения труда
- •Глава 10 межвременной выбор
- •10.1 Бюджетное ограничение
- •10.2 Предпочтения в отношении потребления
- •10.3 Сравнительная статика
- •10.4 Уравнение Слуцкого и межвременной выбор
- •10.5 Инфляция
- •10.6 Текущая стоимость: более пристальный взгляд
- •10.7 Анализ текущей стоимости для нескольких периодов
- •10.8 Применение текущей стоимости
- •10.9 Облигации
- •10.10 Налоги
- •10.11 Выбор ставки процента
- •Глава 11
- •Глава 12 неопределенность
- •12.1 Обусловленное потребление
- •12.2 Функции полезности и вероятности
- •12.3 Ожидаемая полезность
- •12.4 В чем рациональность представления предпочтений в виде ожидаемой полезности
- •12.5 Нерасположенность к риску
- •12.6 Диверсификация
- •12.7 Рассредоточение риска
- •12.8 Роль фондового рынка
- •Глава 13 рисковые акты
- •13.1 Полезность как функция средней и дисперсии относительно нее
- •13.2 Измерение риска
- •13.3 Равновесие на рынке рисковых активов
- •13.4 Как происходит выравнивание доходов
- •Глава 14 излишек потребителя
- •14.1 Спрос на дискретный товар
- •14.2 Построение функции полезности на основе функции спроса
- •14.3 Другие интерпретации излишка потребителя
- •14.4 От излишка потребителя к излишку потребителей
- •14.6 Квазилинейная функция полезности
- •14.7 Интерпретация изменения излишка потребителя
- •14.8 Компенсирующая и эквивалентная вариации дохода
- •14.9 Излишек производителя
- •14.10 Подсчет выигрышей и потерь
- •Глава 15 рыночный спрос
- •15.1. От индивидуального спроса к рыночному
- •15.2. Обратная функция спроса
- •15.3. Дискретные товары
- •15.4. Экстенсивный и интенсивный пределы корректировки спроса
- •15.5. Эластичность
- •15.6. Эластичность и спрос
- •15.7. Эластичность и общий доход
- •15.8. Кривые спроса с постоянной эластичностью
- •15.9. Эластичность и предельный доход
- •15.10. Кривые предельного дохода
- •15.11. Эластичность спроса по доходу
- •Глава 16 равновесие
- •16.1. Предложение
- •16.2. Рыночное равновесие
- •16.3. Два особых случая
- •16.4. Обратные кривые спроса и предложения
- •16.5. Сравнительная статика
- •16.6. Налоги
- •16.7. Перекладывание налога
- •16.8. Потеря мертвого груза в результате введения налога
- •16.9. Эффективность по Парето
- •Глава 17 технология
- •17.1 Ресурсы и выпуск
- •17.2. Описание технологических ограничений
- •17.3. Примеры технологии
- •17.4. Свойства технологии
- •17.5. Предельный продукт
- •17.6. Технологическая норма замещения
- •17.7. Убывание предельного продукта
- •17.8. Убывание технологической нормы замещения
- •17.9. Короткий и длительный периоды
- •17.10. Отдача от масштаба
- •Глава 18 максимизация прибыли
- •18.1. Прибыль
- •18.2. Организационные формы фирм
- •18.3. Прибыль и рыночная стоимость фирмы
- •18.4. Постоянные и переменные факторы
- •18.5. Максимизация прибыли в коротком периоде
- •18.6. Сравнительная статика
- •18.7. Максимизация прибыли в длительном периоде
- •18.8. Обратные кривые спроса на факторы
- •18.9. Максимизация прибыли и отдача от масштаба
- •18.10. Выявленная прибыльность
- •18.11. Минимизация издержек
- •Глава 19 минимизация издержек
- •19.1. Минимизация издержек
- •19.2. Выявленная минимизация издержек
- •VVVVVVVVVVVVVVVVVVVVVVVVVV.
- •19.3. Отдача от масштаба и функция издержек
- •19.4. Долгосрочные и краткосрочные издержки
- •19.5. Постоянные и квазипостоянные издержки
- •19.6. Невозвратные издержки
- •Глава 20 кривые издержек
- •20.1. Средние издержки
- •20.2. Предельные издержки
- •20.3. Предельные издержки и переменные издержки
- •20.4. Долгосрочные издержки
- •20.5. Дискретные уровни размера завода
- •20.6. Долгосрочные предельные издержки
- •Глава 21 предложение фирмы
- •21.1. Рыночная среда
- •21.2. Чистая конкуренция
- •21.3. Решение о предложении, принимаемое конкурентной фирмой
- •21.4. Исключение
- •21.5. Другое исключение
- •21.6. Обратная функция предложения
- •21.7. Прибыль и излишек производителя
- •21.8. Кривая долгосрочного предложения фирмы
- •21.9. Долгосрочные постоянные средние издержки
- •Глава 22 предложение отрасли
- •22.1. Краткосрочное предложение отрасли
- •22.2. Равновесие отрасли в коротком периоде
- •22.3. Равновесие отрасли в длительном периоде
- •22.4. Кривая долгосрочного предложения
- •22.5. Смысл нулевой прибыли
- •22.6. Постоянные факторы производства и экономическая рента
- •22.7. Экономическая рента
- •22.8. Арендные ставки и цены
- •22.9. Политика в отношении ренты
- •22.10. Энергетическая политика
- •Глава 23 монополия
- •23.1. Максимизация прибыли
- •23.2. Линейная кривая спроса и монополия
- •23.3. Ценообразование по принципу "издержки плюс накидка"
- •23.4. Неэффективность монополии
- •23.5. Потеря мертвого груза от монополии
- •23.6. Естественная монополия
- •23.7. Что порождает монополии?
- •Глава 25 рынки факторов
- •25.1. Монополия на рынке выпускаемой продукции
- •25.2. Монопсония
- •25.3. Монополии — поставщики факторов производства и монополии — производители готовой продукции
- •Глава 26 олигополия
- •26.1. Выбор стратегии
- •26.2. Лидерство по объему выпуска
- •26.3. Лидерство в ценообразовании
- •26.4. Сравнение лидерства в ценообразовании и лидерства по объему выпуска
- •26.5. Одновременное установление объемов выпуска
- •26.6. Пример равновесия по Курно
- •26.7. Установление равновесия
- •26.8. Равновесие по Курно для случая многих фирм
- •26.9. Одновременное установление цен
- •26.10. Сговор
- •26.11. Сравнение решений
- •Глава 27 теория игр
- •27.1. Платежная матрица игры
- •27.2. Равновесие по Нэшу
- •27.3. Смешанные стратегии
- •27.4. Дилемма заключенного
- •27.5. Повторяющиеся игры
- •27.6. Как упрочить картель
- •27.7. Последовательные игры
- •27.8. Игра "угроза вхождению"
- •Глава 29 производство
- •29.1. Экономика Робинзона Крузо
- •29.2. "Крузо, Инк."
- •29.3. Фирма
- •29.4. Задача Робинзона
- •29.5. Сведение воедино двух моделей
- •29.6. Различные технологии
- •29.7. Производство и первая теорема экономики благосостояния
- •29.8. Производство и вторая теорема экономики благосостояния
- •29.9. Производственные возможности
- •29.10. Сравнительные преимущества
- •29.11. Эффективность по Парето
- •29.12. "Жертвы кораблекрушения, Инк."
- •29.13. Робинзон и Пятница в роли потребителей
- •29.14. Децентрализованное распределение ресурсов
- •Глава 30
- •Экономическая
- •Благосостояния
- •30.1. Агрегирование предпочтений
- •30.2. Функции общественного благосостояния
- •30.3. Максимизация благосостояния
- •30.4. Индивидуалистические функции общественного благосостояния
- •30.5. Справедливые распределения
- •30.6. Зависть и справедливость
- •Глава 31 внешние эффекты (экстерналии)
- •31.1. Курильщики и некурящие
- •31.2. Квазилинейные предпочтения и теорема Коуза
- •31.3. Внешние эффекты, связанные с производством
- •31.4. Интерпретация условий эффективности по Парето
- •31.5. Рыночные сигналы
- •31.6. Трагедия общин
- •31.7. Загрязнение окружающей среды автомобилями
- •Глава 32 право и экономический анализ
- •32.1. Преступление и наказание
- •32.2. Оговорки
- •32.3. Закон об ответственности
- •32.4. Несчастные случаи с двусторонней ответственностью
- •32.5. Возмещение ущерба в тройном размере как пункт антитрестовского законодательства
- •32.6. Какая из моделей верна?
- •Глава 33 информационные технологии
- •33.1. Сетевые внешние эффекты
- •33.2. Рынки с сетевыми внешними эффектами
- •33.3. Рыночная динамика
- •33.4. Значение сетевых внешних эффектов
- •33.5. Копирование интеллектуальной собственности
- •33.6. Оптимальный штраф
- •0,01F (1 — 0,01)0,02kyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy.
- •33.7. Приобретение и использование интеллектуальной собственности на паевых началах
- •Глава 34 общественные блага
- •34.1. Когда следует предоставлять общественное благо?
- •34.2. Частное предоставление общественного блага
- •34.3. Проблема безбилетника
- •34.4. Различные типы общественных благ
- •34.5. Квазилинейные предпочтения и общественные блага
- •34.6. Задача для безбилетника
- •34.7. Сопоставление с распределением частных благ
- •34.8. Голосование
- •34.9. Обнаружение спроса
- •34.10. Проблемы, связанные с налогом Кларка
- •Глава 35 асимметричная информация
- •35.1. Рынок "лимонов"
- •35.2. Выбор качества
- •35.3. Неблагоприятный отбор
- •35.4. Моральный ущерб
- •35.5. Моральный ущерб и неблагоприятный отбор
- •35.6. Сигнализирование
- •35.7. Стимулы
- •35.8. Асимметричная информация
- •Глава 28 обмен
- •28.1. Ящик Эджуорта
- •28.2. Обменная сделка
- •28.3. Распределения, эффективные по Парето
- •28.4. Рыночный обмен
- •28.5. Алгебра равновесия
- •28.6. Закон Вальраса
- •28.7. Относительные цены
- •28.8. Существование равновесия
- •28.9. Равновесие и эффективность
- •28.10. Алгебра эффективности
- •28.11. Эффективность и равновесие
- •28.12. Значение первой теоремы экономики благосостояния
- •28.13. Значение второй теоремы экономики благосостояния
- •Глава 24 поведение монополии
- •24.1. Ценовая дискриминация
- •24.2. Ценовая дискриминация первой степени
- •24.3. Ценовая дискриминация второй степени
- •24.4. Ценовая дискриминация третьей степени
- •24.5. Продажа товаров наборами
- •24.6. Двойной тариф
- •24.7. Монополистическая конкуренция
- •24.8. Дифференциация продукта
30.6. Зависть и справедливость
Теперь попробуем формализовать некоторые из этих идей. Что мы подразумеваем под симметричным или, во всяком случае, равноправным распределением? Одним из возможных наборов определений является следующий.
Мы говорим, что распределение является равноправным, если ни один из индивидов не предпочитает товарный набор другого индивида своему собственному. Если какой-либо индивид i предпочитает своему собственному набору товарный набор какого-то другого индивида j, то мы говорим, что i завидует j. Наконец, если распределение является одновременно равноправным и эффективным по Парето, то мы говорим, что это справедливое распределение.
Имеются способы формализации вышеупомянутой идеи симметрии. Распределение в соответствии с принципом равного разделения товаров обладает тем свойством, что ни один из индивидов не завидует какому-либо другому, однако данным свойством обладают и многие другие из имеющихся распределений.
Рассмотрим рис.30.3. Чтобы определить, является ли какое-либо распределение равноправным, достаточно посмотреть на то распределение, к которому приводит обмен наборами между индивидами. Если распределение, полученное в результате такого обмена, лежит "под" кривой безразличия каждого индивида, проходящей через первоначальное распределение, то первоначальное распределение является равноправным. ("Под" здесь означает "под" с точки зрения каждого индивида; с нашей же точки зрения, распределение, полученное в результате такого обмена, должно лежать между двумя кривыми безразличия.)
Обратите внимание также на то, что распределение на рис.30.3 еще и эффективно по Парето. Поэтому оно является не только равноправным в том смысле, в котором данный термин был нами определен, но и эффективным. Согласно нашему определению это справедливое распределение. Является ли такого рода распределение счастливой случайностью, или же справедливые распределения обычно существуют?
|
Справедливые распределения. Справедливое распределение в ящике Эджуорта. Каждый индивид предпочитает справедливое распределение распределению, полученному в результате обмена индивидов первоначальными наборами. |
Рис. 30.3 |
Оказывается, справедливые распределения, как правило, существуют, и имеется легкий способ убедиться в том, что это действительно так. Начнем движение в той же точке, что и в предыдущем параграфе, где речь шла о распределении по принципу разделения товаров поровну и рассматривался обмен между индивидами, перемещающий их в точку распределения, эффективного по Парето. Вместо того чтобы воспользоваться просто любым старым способом обмена, воспользуемся особым механизмом конкурентного рынка. Этот механизм переместит нас в точку нового распределения, в которой каждый индивид выбирает лучший товарный набор, который может себе позволить при равновесных ценах (p1, p21204), и, как известно из гл.28, такое распределение должно быть эффективным по Парето.
Но является ли данное распределение по-прежнему равноправным? Допустим, что это не так. Предположим, что один из потребителей, скажем, потребитель A, завидует потребителю B. Это означает, что A предпочел бы иметь в своем собственном товарном наборе то, что имеет B. В условных обозначениях это записывается так:
( , ) A ( , ).
Но, если A предпочитает набор потребителя B своему собственному и если его собственный набор — лучший набор, который он может себе позволить при ценах (p1, p21205), это означает, что набор потребителя B должен стоить больше, чем A может позволить себе заплатить. В условных обозначениях
p1
+ p2
< p1
+ p2
.
Но это противоречие! Ведь согласно гипотезе A и B поначалу имели совершенно одинаковые наборы, так как начали обмен из точки разделения товаров поровну. Если A не может себе позволить купить набор B, то и B не может себе этого позволить.
Поэтому можно заключить, что при данных обстоятельствах A никак не может завидовать B. Конкурентное равновесие, к которому мы приходим в результате обмена, начатого из точки разделения товаров поровну, должно быть справедливым распределением. Таким образом, рыночный механизм сохраняет некоторые виды справедливости: если первоначальное распределение представляет собой разделение товаров поровну, то конечное распределение должно быть справедливым.
Краткие выводы
Теорема невозможности Эрроу показывает, что не существует идеального способа агрегировать индивидуальные предпочтения в общественные.
Тем не менее экономисты часто используют функции благосостояния того или иного вида для представления этических суждений в отношении распределений.
До тех пор пока функция благосостояния является возрастающей фун-кцией полезности каждого индивида, точка максимума благосостояния будет эффективной по Парето. Более того, каждое распределение, эффек-тивное по Парето, можно представлять максимизирующим какую-либо функцию благосостояния.
Идея справедливых распределений дает альтернативный способ выне-сения этических суждений о распределении. Эта идея подчеркивает идею симметричного распределения.
Даже когда первоначальное распределение является симметричным, произвольные методы обмена не всегда приводят к справедливому распре-делению. Однако оказывается, что рыночный механизм способен приво-дить к справедливому распределению.
ВОПРОСЫ ДЛЯ ПОВТОРЕНИЯ
Предположим, мы говорим, что распределение x общественно пред-почитается распределению y только в том случае, если каждый пред-почитает распределение x распределению y. (Иногда это называют ранжи-рованием по Парето, так как данное ранжирование тесно связано с идеей эффективности по Парето.) Каков недостаток данного подхода, если пользоваться им как правилом принятия общественных решений?
Роулсианская функция благосостояния учитывает только благосостояние того индивида, у которого оно ниже всех. Функцию, являющуюся проти-воположностью роулсианской, можно было бы назвать "ницшеанской" функцией благосостояния — функцией благосостояния, согласно которой ценность распределения зависит лишь от благосостояния индивида с наивысшим уровнем благосостояния. Каков мог быть математический вид ницшеанской функции благосостояния?
Предположим, что множество возможных полезностей — выпуклое и что потребителей заботит только собственное потребление. Какого рода рас-пределения представляют точки максимума благосостояния для ниц-шеанской функции благосостояния?
Допустим, что распределение является эффективным по Парето и что каждого индивида заботит только его собственное потребление. Докажите, что должен существовать индивид, который никому не завидует в смысле, описанном в тексте данной главы. (Над этой головоломкой придется поразмыслить, но она того стоит.)
Способность устанавливать последовательность голосования часто может служить мощным орудием воздействия на итоги голосования. Приняв в качестве предпосылки, что общественные предпочтения определяются голосованием по принципу большинства по каждой паре альтернатив и что предпочтения, приведенные в табл.30.1, остаются в силе, проде-монстрируйте этот факт, разработав такую последовательность голосо-вания, в результате которой победителем оказывается распределение y. Найдите такую последовательность голосования, при которой победи-телем оказывается z. Каким свойством общественных предпочтений объя-сняется то, что способность устанавливать последовательность голосо-вания обладает таким воздействием на его итоги?
ПРИЛОЖЕНИЕ
В данном приложении мы рассмотрим задачу максимизации благосостояния, в которой используется индивидуалистическая функция благосостояния. Воспользовавшись для описания границы производственных возможностей функцией трансформации, описанной в гл.29, мы записываем задачу максимизации благосостояния в виде
max W(uA( , ), uB( , ))1206
при T(X1, X2) = 0, 1207
где X11208 и X21209 обозначают общие произведенные и потребленные количества товаров 1 и 2.
Функция Лагранжа для этой задачи есть
L = W(uA( , ), uB( , )) — T(X1, X2) — 0).
Взяв производную данной функции по каждой из выбираемых переменных, мы получаем следующие условия первого порядка:
—
1210
—
1211
—
1212
—
1213.
Произведя преобразования и поделив первое уравнение на второе и третье — на четвертое, мы получаем
1214
1215.
Обратите внимание на то, что это те самые уравнения, которые мы видели в приложении к гл.29. Таким образом, задача максимизации благосостояния дает нам те же условия первого порядка, что и задача эффективности по Парето.
Очевидно, это не случайно. Согласно проведенным в тексте рассуждениям, распределение, являющееся результатом максимизации функции благосостояния Бергсона—Самуэльсона, эффективно по Парето, и каждое распределение, эффективное по Парето, максимизирует некоторую функцию полезности. Поэтому точки максимума благосостояния и распределения, эффективные по Парето, должны удовлетворять одинаковым условиям первого порядка.
