- •Глава 7 выявленные предпочтения
- •7.1. Идея выявленных предпочтений
- •7.2. От выявленных предпочтений к предпочтениям
- •7.3. Реконструирование предпочтений
- •7.4 Слабая аксиома выявленных предпочтений
- •7.6 Сильная аксиома выявленных предпочтений (Strong Axiom of Revealed Preference — sarp)
- •7.8. Индексы
- •7.9. Индексы цен
- •Глава 8 уравнение слуцкого
- •8.1. Эффект замещения
- •8.2. Эффект дохода
- •8.3. Знак эффекта замещения
- •8.4. Общее изменение спроса
- •8.5. Отношения изменений
- •8.6. Закон спроса
- •8.7. Примеры эффектов дохода и замещения
- •8.8. Другой эффект замещения
- •8.9 Кривые компенсированного спроса
- •Глава 9 купля и продажа
- •9.1. Чистый спрос и валовой спрос
- •9.2. Бюджетное ограничение
- •9.3. Изменение начального запаса
- •9.4. Изменения цен
- •9.5. Кривые "цена—потребление" и кривые спроса
- •9.6. И снова уравнение Слуцкого
- •XXXXXXXXX.
- •9.7. Применение уравнения Слуцкого
- •9.8. Предложение труда
- •9.9. Сравнительная статика предложения труда
- •Глава 10 межвременной выбор
- •10.1 Бюджетное ограничение
- •10.2 Предпочтения в отношении потребления
- •10.3 Сравнительная статика
- •10.4 Уравнение Слуцкого и межвременной выбор
- •10.5 Инфляция
- •10.6 Текущая стоимость: более пристальный взгляд
- •10.7 Анализ текущей стоимости для нескольких периодов
- •10.8 Применение текущей стоимости
- •10.9 Облигации
- •10.10 Налоги
- •10.11 Выбор ставки процента
- •Глава 11
- •Глава 12 неопределенность
- •12.1 Обусловленное потребление
- •12.2 Функции полезности и вероятности
- •12.3 Ожидаемая полезность
- •12.4 В чем рациональность представления предпочтений в виде ожидаемой полезности
- •12.5 Нерасположенность к риску
- •12.6 Диверсификация
- •12.7 Рассредоточение риска
- •12.8 Роль фондового рынка
- •Глава 13 рисковые акты
- •13.1 Полезность как функция средней и дисперсии относительно нее
- •13.2 Измерение риска
- •13.3 Равновесие на рынке рисковых активов
- •13.4 Как происходит выравнивание доходов
- •Глава 14 излишек потребителя
- •14.1 Спрос на дискретный товар
- •14.2 Построение функции полезности на основе функции спроса
- •14.3 Другие интерпретации излишка потребителя
- •14.4 От излишка потребителя к излишку потребителей
- •14.6 Квазилинейная функция полезности
- •14.7 Интерпретация изменения излишка потребителя
- •14.8 Компенсирующая и эквивалентная вариации дохода
- •14.9 Излишек производителя
- •14.10 Подсчет выигрышей и потерь
- •Глава 15 рыночный спрос
- •15.1. От индивидуального спроса к рыночному
- •15.2. Обратная функция спроса
- •15.3. Дискретные товары
- •15.4. Экстенсивный и интенсивный пределы корректировки спроса
- •15.5. Эластичность
- •15.6. Эластичность и спрос
- •15.7. Эластичность и общий доход
- •15.8. Кривые спроса с постоянной эластичностью
- •15.9. Эластичность и предельный доход
- •15.10. Кривые предельного дохода
- •15.11. Эластичность спроса по доходу
- •Глава 16 равновесие
- •16.1. Предложение
- •16.2. Рыночное равновесие
- •16.3. Два особых случая
- •16.4. Обратные кривые спроса и предложения
- •16.5. Сравнительная статика
- •16.6. Налоги
- •16.7. Перекладывание налога
- •16.8. Потеря мертвого груза в результате введения налога
- •16.9. Эффективность по Парето
- •Глава 17 технология
- •17.1 Ресурсы и выпуск
- •17.2. Описание технологических ограничений
- •17.3. Примеры технологии
- •17.4. Свойства технологии
- •17.5. Предельный продукт
- •17.6. Технологическая норма замещения
- •17.7. Убывание предельного продукта
- •17.8. Убывание технологической нормы замещения
- •17.9. Короткий и длительный периоды
- •17.10. Отдача от масштаба
- •Глава 18 максимизация прибыли
- •18.1. Прибыль
- •18.2. Организационные формы фирм
- •18.3. Прибыль и рыночная стоимость фирмы
- •18.4. Постоянные и переменные факторы
- •18.5. Максимизация прибыли в коротком периоде
- •18.6. Сравнительная статика
- •18.7. Максимизация прибыли в длительном периоде
- •18.8. Обратные кривые спроса на факторы
- •18.9. Максимизация прибыли и отдача от масштаба
- •18.10. Выявленная прибыльность
- •18.11. Минимизация издержек
- •Глава 19 минимизация издержек
- •19.1. Минимизация издержек
- •19.2. Выявленная минимизация издержек
- •VVVVVVVVVVVVVVVVVVVVVVVVVV.
- •19.3. Отдача от масштаба и функция издержек
- •19.4. Долгосрочные и краткосрочные издержки
- •19.5. Постоянные и квазипостоянные издержки
- •19.6. Невозвратные издержки
- •Глава 20 кривые издержек
- •20.1. Средние издержки
- •20.2. Предельные издержки
- •20.3. Предельные издержки и переменные издержки
- •20.4. Долгосрочные издержки
- •20.5. Дискретные уровни размера завода
- •20.6. Долгосрочные предельные издержки
- •Глава 21 предложение фирмы
- •21.1. Рыночная среда
- •21.2. Чистая конкуренция
- •21.3. Решение о предложении, принимаемое конкурентной фирмой
- •21.4. Исключение
- •21.5. Другое исключение
- •21.6. Обратная функция предложения
- •21.7. Прибыль и излишек производителя
- •21.8. Кривая долгосрочного предложения фирмы
- •21.9. Долгосрочные постоянные средние издержки
- •Глава 22 предложение отрасли
- •22.1. Краткосрочное предложение отрасли
- •22.2. Равновесие отрасли в коротком периоде
- •22.3. Равновесие отрасли в длительном периоде
- •22.4. Кривая долгосрочного предложения
- •22.5. Смысл нулевой прибыли
- •22.6. Постоянные факторы производства и экономическая рента
- •22.7. Экономическая рента
- •22.8. Арендные ставки и цены
- •22.9. Политика в отношении ренты
- •22.10. Энергетическая политика
- •Глава 23 монополия
- •23.1. Максимизация прибыли
- •23.2. Линейная кривая спроса и монополия
- •23.3. Ценообразование по принципу "издержки плюс накидка"
- •23.4. Неэффективность монополии
- •23.5. Потеря мертвого груза от монополии
- •23.6. Естественная монополия
- •23.7. Что порождает монополии?
- •Глава 25 рынки факторов
- •25.1. Монополия на рынке выпускаемой продукции
- •25.2. Монопсония
- •25.3. Монополии — поставщики факторов производства и монополии — производители готовой продукции
- •Глава 26 олигополия
- •26.1. Выбор стратегии
- •26.2. Лидерство по объему выпуска
- •26.3. Лидерство в ценообразовании
- •26.4. Сравнение лидерства в ценообразовании и лидерства по объему выпуска
- •26.5. Одновременное установление объемов выпуска
- •26.6. Пример равновесия по Курно
- •26.7. Установление равновесия
- •26.8. Равновесие по Курно для случая многих фирм
- •26.9. Одновременное установление цен
- •26.10. Сговор
- •26.11. Сравнение решений
- •Глава 27 теория игр
- •27.1. Платежная матрица игры
- •27.2. Равновесие по Нэшу
- •27.3. Смешанные стратегии
- •27.4. Дилемма заключенного
- •27.5. Повторяющиеся игры
- •27.6. Как упрочить картель
- •27.7. Последовательные игры
- •27.8. Игра "угроза вхождению"
- •Глава 29 производство
- •29.1. Экономика Робинзона Крузо
- •29.2. "Крузо, Инк."
- •29.3. Фирма
- •29.4. Задача Робинзона
- •29.5. Сведение воедино двух моделей
- •29.6. Различные технологии
- •29.7. Производство и первая теорема экономики благосостояния
- •29.8. Производство и вторая теорема экономики благосостояния
- •29.9. Производственные возможности
- •29.10. Сравнительные преимущества
- •29.11. Эффективность по Парето
- •29.12. "Жертвы кораблекрушения, Инк."
- •29.13. Робинзон и Пятница в роли потребителей
- •29.14. Децентрализованное распределение ресурсов
- •Глава 30
- •Экономическая
- •Благосостояния
- •30.1. Агрегирование предпочтений
- •30.2. Функции общественного благосостояния
- •30.3. Максимизация благосостояния
- •30.4. Индивидуалистические функции общественного благосостояния
- •30.5. Справедливые распределения
- •30.6. Зависть и справедливость
- •Глава 31 внешние эффекты (экстерналии)
- •31.1. Курильщики и некурящие
- •31.2. Квазилинейные предпочтения и теорема Коуза
- •31.3. Внешние эффекты, связанные с производством
- •31.4. Интерпретация условий эффективности по Парето
- •31.5. Рыночные сигналы
- •31.6. Трагедия общин
- •31.7. Загрязнение окружающей среды автомобилями
- •Глава 32 право и экономический анализ
- •32.1. Преступление и наказание
- •32.2. Оговорки
- •32.3. Закон об ответственности
- •32.4. Несчастные случаи с двусторонней ответственностью
- •32.5. Возмещение ущерба в тройном размере как пункт антитрестовского законодательства
- •32.6. Какая из моделей верна?
- •Глава 33 информационные технологии
- •33.1. Сетевые внешние эффекты
- •33.2. Рынки с сетевыми внешними эффектами
- •33.3. Рыночная динамика
- •33.4. Значение сетевых внешних эффектов
- •33.5. Копирование интеллектуальной собственности
- •33.6. Оптимальный штраф
- •0,01F (1 — 0,01)0,02kyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy.
- •33.7. Приобретение и использование интеллектуальной собственности на паевых началах
- •Глава 34 общественные блага
- •34.1. Когда следует предоставлять общественное благо?
- •34.2. Частное предоставление общественного блага
- •34.3. Проблема безбилетника
- •34.4. Различные типы общественных благ
- •34.5. Квазилинейные предпочтения и общественные блага
- •34.6. Задача для безбилетника
- •34.7. Сопоставление с распределением частных благ
- •34.8. Голосование
- •34.9. Обнаружение спроса
- •34.10. Проблемы, связанные с налогом Кларка
- •Глава 35 асимметричная информация
- •35.1. Рынок "лимонов"
- •35.2. Выбор качества
- •35.3. Неблагоприятный отбор
- •35.4. Моральный ущерб
- •35.5. Моральный ущерб и неблагоприятный отбор
- •35.6. Сигнализирование
- •35.7. Стимулы
- •35.8. Асимметричная информация
- •Глава 28 обмен
- •28.1. Ящик Эджуорта
- •28.2. Обменная сделка
- •28.3. Распределения, эффективные по Парето
- •28.4. Рыночный обмен
- •28.5. Алгебра равновесия
- •28.6. Закон Вальраса
- •28.7. Относительные цены
- •28.8. Существование равновесия
- •28.9. Равновесие и эффективность
- •28.10. Алгебра эффективности
- •28.11. Эффективность и равновесие
- •28.12. Значение первой теоремы экономики благосостояния
- •28.13. Значение второй теоремы экономики благосостояния
- •Глава 24 поведение монополии
- •24.1. Ценовая дискриминация
- •24.2. Ценовая дискриминация первой степени
- •24.3. Ценовая дискриминация второй степени
- •24.4. Ценовая дискриминация третьей степени
- •24.5. Продажа товаров наборами
- •24.6. Двойной тариф
- •24.7. Монополистическая конкуренция
- •24.8. Дифференциация продукта
27.3. Смешанные стратегии
Однако расширив наше определение стратегий, для этой игры можно найти новый род равновесия Нэша. До сих пор мы полагали, что каждый игрок выбирает стратегию раз и навсегда. Иными словами, каждый игрок делает выбор и придерживается его. Это называется чистой стратегией.
Можно представить себе дело и по-другому, допустив, что игроки выбирают стратегии случайно — приписывают каждому выбору определенную вероятность и разыгрывают выбранные стратегии в соответствии с этими вероятностями. Например, A мог бы предпочесть в течение 50% времени следовать стратегии "верх" и в течение 50% времени — стратегии "низ", в то время, как B мог бы предпочесть в течение 50% времени следовать стратегии "слева" и в течение 50% времени — стратегии "справа". Такого рода стратегия называется смешанной.
Если A и B будут придерживаться указанных выше смешанных стратегий, следуя каждой из выбранных ими стратегий в течение половины времени, то с вероятностью 1/4 они закончат игру в каждой из четырех ячеек платежной матрицы. Следовательно, средний выигрыш для A будет равен 0, а для B — 1/2.
Равновесие по Нэшу при смешанных стратегиях — такое равновесие, в котором каждый игрок выбирает оптимальную частоту разыгрывания своих стратегий при заданной частоте разыгрывания выбранных стратегий другим игроком.
Можно показать, что в тех играх, которые мы рассматриваем в этой главе, всегда будет существовать равновесие по Нэшу при смешанных стратегиях. Поскольку при смешанных стратегиях равновесие по Нэшу существует всегда и поскольку этому понятию многие интуитивно доверяют, данное понятие равновесия очень широко используется в анализе игрового поведения. Можно показать, что если в примере, описанном в табл.27.3, игрок A будет следовать стратегии "верх" с вероятностью 3/4 и стратегии "низ" с вероятностью 1/4, а игрок B — следовать стратегии "слева" с вероятностью 1/2 и стратегии "справа" — с вероятностью 1/2, это и будет равновесием по Нэшу.
27.4. Дилемма заключенного
Другая проблема связана с тем, что если в игре имеется равновесие по Нэшу, оно не обязательно ведет к исходам, эффективным по Парето. Рассмотрим, например, игру, описанную в табл.27.4. Эта игра известна как дилемма заключенного. В первоначальной версии игры рассматривалась ситуация, в которой двоих заключенных — соучастников преступления — допрашивают в отдельных комнатах. У каждого из заключенных имеется выбор: либо признаться в преступлении и тем самым впутать другого, либо отрицать свое участие в преступлении. Если признается лишь один из заключенных, его освободят, и обвинение падет на другого заключенного, которого приговорят к 6 месяцам тюремного заключения. Если оба заключенных будут отрицать свою причастность к преступлению, обоих продержат в тюрьме по 1 месяцу в связи с соблюдением формальностей, а если оба игрока признаются, обоих приговорят к 3 месяцам тюремного заключения. Платежная матрица для этой игры приведена в табл.27.4. Записи в каждой клетке матрицы представляют полезность, приписываемую каждым из игроков различным срокам пребывания в тюрьме, которую мы для простоты будем считать продолжительностью их тюремного заключения, взятой со знаком "минус".
Поставьте себя на место игрока A. Если игрок B решит отрицать, что совершил преступление, то, конечно, вам лучше признаться, так как тогда вас освободят. Подобным же образом если игрок B признается, то вам лучше признаться, так как в этом случае вас приговорят не к 6 месяцам тюремного заключения, а только к 3. Следовательно, что бы ни делал игрок B, игроку A выгоднее признаться.
Табл. 27.4 |
Дилемма заключенного |
|
|
Игрок B |
|
|
Признаться |
Отрицать |
Признаться |
—3, —3 |
0, —6 |
Отрицать |
—6, 0 |
—1, —1 |
То же самое можно сказать и об игроке B — ему тоже выгоднее признаться. Следовательно, единственное равновесие по Нэшу в этой игре — исход, при котором оба игрока признаются. В действительности исход, при котором оба игрока признаются, — это не только равновесие по Нэшу, но и равновесие при доминирующих стратегиях, поскольку у каждого игрока имеется один и тот же оптимальный выбор, независимый от выбора другого игрока.
Но если бы они оба держали язык за зубами, им обоим это было бы выгоднее! Если бы они оба могли быть уверены в том, что другой промолчит, и договорились бы между собой не признаваться, то выигрыш каждого составил бы —1, что было бы выгодно обоим. Стратегия ("отрицать", "отрицать") эффективна по Парето, другой стратегии, которая была бы выгодна сразу обоим, нет, в то время, как стратегия ("признаться", "признаться") неэффективна по Парето.
Проблема состоит в том, что заключенные лишены возможности координировать свои действия. Если бы каждый из них мог доверять другому, благосостояние обоих повысилось бы.
Дилемма заключенного применима к широкому кругу экономических и политических явлений. Рассмотрим, например, проблему контроля над вооружением. Можно интерпретировать стратегию "признаться" как "развертывать новые ракеты", а стратегию "отрицать" — как "не развертывать новые ракеты". Обратите внимание на то, что выигрыши вполне подходят для такой игры. Если мой противник развертывает свои ракеты, я, конечно, захочу развертывать свои несмотря на то, что наилучшей стратегией для нас обоих было бы придти к соглашению о неразвертывании ракет. Однако если не существует способа заключить соглашение, реально обязывающее его участников к выполнению, мы в итоге оба развернем ракеты и благосостояние обоих понизится.
Другой хороший пример применения дилеммы заключенного — проблема мошенничества в картеле. Теперь можно интерпретировать "признаться" как "превысить квоту выпуска", а "отрицать" — как "придерживаться первоначальной квоты". Если вы думаете, что другая фирма собирается придерживаться своей квоты, вам выгоднее превысить свою квоту. А если вы думаете, что другая фирма превысит свою квоту выпуска, то и вы тоже можете это сделать!
Дилемма заключенного вызвала большие споры в отношении того, как же "правильно", или, точнее, как разумнее играть в эту игру. Ответ, похоже, зависит от того, разыгрывается ли игра в течение одного периода или повторяется бесконечное число раз.
Если в игру играют только один раз, то разумной представляется стратегия нарушения условий соглашения — в рассматриваемом примере это стратегия "признаться". В конце концов, что бы ни делал другой, вам выгоднее следовать данной стратегии, и у вас нет способа повлиять на поведение другого игрока.
