
- •Курсовая работа
- •Введение
- •1 Краткая характеристика фенола
- •1.1 Физические и химические свойства
- •1.2 Токсичность фенола
- •1.3 Методы получение фенола
- •1.4 Применение фенола
- •2 Краткая характеристика ацетона
- •2.1 Физические и химические свойства ацетона
- •2.2 Токсичность ацетона
- •2.3 Пожароопасность ацетона
- •2.4 Методы получения
- •3 Совместное получение фенола и ацетона
- •1 Стадия – получение кумола
- •2 Стадия – каталитическое окисление
- •3.1 Характеристика используемого сырья
- •3.2 Описание процесса
- •3.3 Описание технологического процесса
- •3.4 Преимущества и недостатки метода
- •3.5 Отходы производства и их утилизация
- •Заключение
- •Список использованной литературы
1.3 Методы получение фенола
Из каменноугольной смолы (как побочный продукт – выход мал):
C6H5ONa + H2SO4(разб) → С6H5-OH + NaHSO4
фенолят натрия
(продукт обработки смолы едким натром)
Из галогенбензолов:
С6H5-Cl + NaOH t,p → С6H5 – OH + NaCl
3. Метод Рашига: процесс получения фенола, включающий реакцию хлорирования бензола и последующий гидролиз монохлорбензола:
Суммарный выход фенола по двум стадиям составляет 70-85%.
1.4 Применение фенола
По данным на 2006 год мировое потребление фенола имеет следующую структуру:
44 % фенола расходуется на производство бисфенола А, который, в свою очередь, используется для производства поликарбона и эпоксидных смол;
30 % фенола расходуется на производство фенолформальдегидных смол;
12 % фенола гидрированием превращается в циклогексанол, используемый для получения искусственных волокон — нейлона и капрона;
остальные 14 % расходуются на другие нужды, в том числе на производство антиоксидантов (ионол), неионогенных ПАВ — полиоксиэтилированных алкилфенолов (неонолы), других фенолов (крезолов), лекарственных препаратов (аспирин), антисептиков (ксероформа) и пестицидов. Раствор 1,4 % фенола применяется в медицине (орасепт), как обезболивающее и антисептическое средство.
Фенол и его производные обуславливают консервирующие свойства коптильного дыма. Также фенол используют в качестве консерванта в вакцинах. Пример использования, в качестве антисептика — препарат «Орасепт» [1].
2 Краткая характеристика ацетона
Ацетон (диметилкетон, систематическое наименование: пропан-2-он) — простейший представитель кетонов. Формула: CH3-C(O)-CH3. Бесцветная легкоподвижная летучая жидкость с характерным запахом.
Мировое производство ацетона составляет более 6,9 миллионов тонн в год (по данным на 2012 г.) и устойчиво растёт [1].
2.1 Физические и химические свойства ацетона
Физические свойства
Полностью смешивается с водой и большинством органических растворителей. Ацетон хорошо растворяет многие органические вещества (ацетилцеллюлозу и нитроцеллюлозу, воск, резину и др.), а также ряд солей (хлорид кальция, иодид калия). Является одним из метаболитов, производимых человеческим организмом.
Молярная масса 58,08 г/моль;
Плотность 0,7899 г/см3
Температура плавления - 95 0C;
Температура кипения 56,1 0С;
Химические свойства
Ацетон является одним из наиболее реакционноспособных кетонов. Так, он один из немногих кетонов образует бисульфитное соединение
CH3C(O)CH3 + NaHSO3 → (CH3)2C(OH)-SO3Na
Вступает в альдольную самоконденсацию под действием щелочей, с образованием диацетонового спирта.
2CH3C(O)CH3 → (CH3)2C(OH)CH2C(O)CH3
Восстанавливается цинком до пинакон.
2CH3C(O)CH3 + Zn → (CH3)2C(OH)C(OH)(CH3)2
При пиролизе (700 °C) образует кетен.
CH3C(O)CH3 → CH2=C=O + 2H2
Легко присоединяет циановодород с образованием ацетонциангидрина.
CH3C(O)CH3 + HCN → (CH3)2C(OH)CN
Атомы водорода в ацетоне легко замещаются на галогены. Под действием хлора (иода) в присутствии щёлочи образует хлороформ (йодоформ).
Ацетон, как и другие кетоны, в щелочной среде способен изомерироваться в пропаналь, последний — до пропенового спирта. В кислой среде и в присутствии ионов двухвалентной ртути, пропеновый спирт изомерируется сразу в ацетон. Между этими веществами всегда существует таутомерное равновесие:
CH3C(O)CH3 ↔ С2Н5СОН ↔ СН2=С(ОН)-СН3