
- •1.2 Философские замечания
- •1.3 Процедурное программирование
- •1.4 Модульное программирование
- •1.5 Абстракция данных
- •1.6 Пределы абстракции данных
- •1.7 Объектно-ориентированное программирование
- •1.8 Концепции объектно-ориентированного программирования
- •1.8.1 Инкапсуляция
- •1.8.2 Полиморфизм
- •1.8.3 Наследование
- •1.10 Несколько полезных советов
- •2.2 Перегрузка функций
- •2.3 Перегрузка операторов
- •2.4 Наследование
- •2.5 Конструкторы и деструкторы
- •2.7 Два новых типа данных
- •Глава 3. Классы и объекты
- •3.1 Параметризованные конструкторы
- •3.2 Дружественные функции
- •3.3 Значения аргументов функции по умолчанию
- •3.3.1 Корректное использование аргументов по умолчанию
- •3.4 Взаимосвязь классов и структур
- •3.5 Связь объединений и классов
- •3.6 Анонимные объединения
- •3.7 Inline-функции
- •3.7.1 Создание inline-функций внутри класса
- •3.8 Передача объектов в функции
- •3.9 Возвращение объектов функциями
- •3.10 Присваивание объектов
- •3.11 Конструктор копирования
- •3.12 Массивы объектов
- •3.12.1 Инициализация массивов объектов
- •3.12.2 Создание инициализированных и неинициализированных массивов
- •3.13 Указатели на объекты
- •3.14 Статические члены класса
- •Глава 4. Перегрузка функций и операторов
- •4.1 Перегрузка конструкторов
- •4.2 Локализация переменных
- •4.3 Локализация создания объектов
- •4.4 Перегрузка функций и неопределенность
- •4.5 Определение адреса перегруженной функции
- •4.6 Указатель this
- •4.7 Перегрузка операторов
- •4.8 Дружественная функция-оператор
- •4.9 Ссылки
- •4.9.1 Параметры-ссылки
- •4.9.2 Передача ссылок на объекты
- •4.9.3 Возврат ссылок
- •4.9.4 Независимые ссылки
- •4.9.5 Использование ссылок для перегрузки унарных операторов
- •4.10 Перегрузка оператора []
- •4.11 Создание функций преобразования типов
- •Глава 5. Наследование, виртуальные функции и полиморфизм
- •5.1 Наследование и спецификаторы доступа
- •5.1.1 Спецификаторы доступа
- •5.1.2 Спецификатор доступа при наследовании базового класса
- •5.1.3 Дополнительная спецификация доступа при наследовании
- •5.2 Конструкторы и деструкторы производных классов
- •5.3 Множественное наследование
- •5.4 Передача параметров в базовый класс
- •5.5 Указатели и ссылки на производные типы
- •5.6 Ссылки на производные классы
- •5.7 Виртуальные функции
- •5.8 Для чего нужны виртуальные функции?
- •5.9 Чисто виртуальные функции и абстрактные типы
- •5.10 Виртуальный базовый класс
- •5.11 Раннее и позднее связывание
- •Глава 6. Подсистема динамического выделения памяти
- •6.1 Введение в обработку исключений
- •6.1.1 Перехват всех исключений
- •6.2 Работа с памятью с помощью new и delete
- •6.3 Размещение объектов
- •6.4 Перегрузка new u delete
- •7.1.1 Потоки
- •7.3 Создание собственных операторов вставки и извлечения
- •7.3.1 Создание операторов вставки
- •7.3.2 Перегрузка операторов извлечения
- •7.4 Форматирование ввода/вывода
- •7.4.1 Форматирование с помощью функций-членов класса ios
- •7.4.2 Использование манипуляторов
- •7.5 Создание собственных функций-манипуляторов
- •7.5.1 Создание манипуляторов без параметров
- •7.5.2 Создание манипуляторов с параметрами
- •7.6 Файловый ввод/вывод
- •7.6.1 Открытие и закрытие файлов
- •7.6.2 Чтение и запись в текстовые файлы
- •7.6.3 Двоичный ввод/вывод
- •7.6.4 Определение конца файла
- •7.6.5 Произвольный доступ
- •Глава 8. Ввод/вывод в массивы
- •8.1 Классы ввода/вывода в массивы
- •8.2 Создание потока вывода
- •8.3 Ввод из массива
- •8.4 Использование функций-членов класса ios
- •8.5 Потоки ввода/вывода в массивы
- •8.6 Произвольный доступ в массив
- •8.7 Использование динамических массивов
- •8.8 Манипуляторы и ввод/вывод в массив
- •8.9 Собственные операторы извлечения и вставки
- •8.10 Форматирование на основе массивов
- •Глава 9. Шаблоны и библиотека stl
- •9.1 Функции-шаблоны
- •9.2 Функции с двумя типами-шаблонами
- •9.3 Ограничения на функции-шаблоны
- •9.4 Классы-шаблоны
- •9.5 Пример с двумя типами-шаблонами
- •9.6 Обзор библиотеки stl
- •9.7 Класс vector
- •9.7 Класс string
- •9.8 Класс list
3.7.1 Создание inline-функций внутри класса
Другим способом создания inline-функции служит включение кода функции внутри объявления класса. Всякая функция, определенная внутри объявления класса, является автоматически inline-функцией, если только это допустимо. В этом случае нет необходимости предварять объявление функции ключевым словом inline. Например, предыдущая программа может быть переписана следующим образом:
#include <iostream.h>
class C
{
int i;
public:
int get_i() { return i; }
void put_i(int j) { i = j; }
};
int main()
{
C s;
s.put_i(10);
cout << s.get_i();
return 0;
}
Обратим внимание, каким образом организован код. В профессионально написанном С++-коде короткие функции, наподобие проиллюстрированных в данном примере, обычно определяются внутри объявления класса.
3.8 Передача объектов в функции
Объекты могут быть переданы в функции тем же способом, что и переменные любого другого типа. Объекты передаются функциям с использованием стандартного механизма передачи по значению. Это означает, что создается копия объекта, которая и передается функции. Однако тот факт, что создается копия, означает по существу, что создается другой объект. В результате возникает вопрос, исполняется ли функция-конструктор объекта при создании копии и исполняется ли функция-деструктор, когда копия уничтожается. Ответ на эти два вопроса может очень удивить. Для начала рассмотрим пример:
#include <iostream.h>
class myclass
{
int i;
public:
myclass(int n);
~myclass();
void set_i(int n) { i=n; }
int get_i() { return i; }
};
myclass::myclass(int n)
{
i = n;
cout << "Constructing " << i << "\n";
}
myclass::-myclass()
{
cout << "Destroying " << i << "\n";
}
void f(myclass ob)
{
ob.set_i(2);
cout << “This is local i: “ << ob.get_i() << “\n”;
}
int main ()
{
myclass c1(1);
f(c1);
cout << "This is i in main: " << c1.get_i() << "\n";
return 0;
}
Эта программа выведет на экран следующий текст:
Constructing 1
This is local i: 2
Destroying 2
This is i in main: 1
Destroying 1
Обратим внимание, что имели место два вызова деструктора, в то время как конструктор вызывался только один раз. Выведенный текст иллюстрирует, что функция-конструктор не вызывается, когда копия объекта c1 (в программе main()) передается переменной ob (внутри функции f()). Причина, по которой конструктор не вызывался при создании копии объекта, может быть легко понята. Когда объект передается в функцию, нужно текущее состояние этого объекта. Если бы при создании копии вызывался конструктор, то осуществлялась бы инициализация объекта, которая бы изменила его состояние. Поэтому конструктор не может вызываться при создании копии объекта для передачи в функцию.
Хотя функция-конструктор не вызывалась при передаче объекта в функцию, необходимо вызывать деструктор при уничтожении копии. (Копия объекта уничтожается, как и любая локальная переменная, после окончания выполнения функции.) Надо иметь в виду, что копия объекта существует до тех пор, пока исполняется функция. Это означает, что копия может выполнять операции, которые потребуют вызова деструктора для уничтожения этой копии. Например, копия может резервировать память, которую необходимо освободить при ее уничтожении. По этой причине при уничтожении копии необходимо вызывать деструктор.
Суммируем сказанное. При создании копии объекта для передачи ее в функцию конструктор объекта не вызывается. Однако когда копия объекта внутри функции уничтожается, деструктор вызывается.
По умолчанию при создании копии объекта появляется его побитовая копия. Это означает, что новый объект служит точным дубликатом оригинала. Тот факт, что создается точная копия, может в некоторых случаях служить источником для беспокойства. Хотя для передачи объекта в функцию используется обычный механизм передачи по значению, который в теории защищает и изолирует вызываемый аргумент, остается возможность побочных эффектов, в результате которых может быть поврежден объект, используемый как аргумент. Например, если некоторый объект, используемый как аргумент, резервирует память и освобождает эту память при своем уничтожении, тогда его локальная копия внутри функции освободит ту же самую память при вызове деструктора. В результате исходный объект окажется поврежденным и по существу бесполезным. Как будет видно далее, можно предотвратить возникновение подобных проблем с помощью определения оператора копирования для собственного класса путем создания специального типа конструктора, который называется конструктором копирования.