Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
мат.методы шпоры.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
730.62 Кб
Скачать

5. Модели теории игр.Решение матричных игр в смешанных стратегиях путем сведения к задаче линейного программирования.

Игра- упрощенная модель конфликтной ситуации. Игра ведется по определенным правилам. Суть игры в том, что каждый из ее участников принимает такие решения, которые, как он полагает, могут обеспечить ему наилучший результат (исход). Исход игры – это значение некоторой функции, называемой функцией выигрыша (платежной функцией). Эта функция задается либо таблицей, либо аналитическим выражением. Если сумма выигрышей игроков равна нулю, то игру называют игрой с нулевой суммой. Если в игре участвуют 2 игрока, то ее называют парной. В качестве игрока может выступать как отдельное лицо, так и группа лиц, объединенных общей целью. Каждый игрок в ходе развивающейся конфликтной ситуации выбирает образ своих действий самостоятельно, имея лишь общее представление о множестве допустимых ответных решений партнера. Поэтому ни 1 из игроков не может полностью контролировать положение, так что как одному и другому игроку решение приходится принимать в условиях неопределенности. Непременным остается только стремление игроков использовать любую ошибку партнера в своих интересах. Игры, в которых оба участника, действуя в строгом соответствии с правилами, в равной мере сознательно стремятся добиться наилучшего для себя результата, наз-т стратегическими.

В экон. практике приходится моделировать ситуации, придавая им игровую схему, в которых один из участников безразличен к рез-ту игры. Такие игры наз-т играми с природой, понимая под термином "природа" всю совокупность внешних обстоятельств, в которых сознательному игроку приходится принимать решение. В играх с природой степень неопределенности при принятии решения сознательным игроком возрастает. Объясняется это тем, что если в стратегических играх каждый из участников постоянно ожидает наихудшего для себя ответного действия партнера.

Смешанной стратегией игрока A называют вектор компоненты которого удовлетворяют условиям Смешанной стратегией игрока называют вектор ,– вероятности, с которыми игроки и выбирают свои чистые стратегии в ходе игры. При использовании смешанных стратегий игра приобретает случайный характер, случайной становиться и величина выигрыша игрока А (проигрыша игрока В). Эта величина является функцией смешанных стратегий и определяется по формуле

Функцию наз-т функцией выигрыша или платежной функцией.

Смешанные стратегии наз-т оптимальными, если они образуют седловую точку для платежной функции , т.е. если они удовлетворяют неравенству . Пользуются и другим определением оптимальных смешанных стратегий: стратегии и называют оптимальными, если Величину наз-т ценой игры.

Пусть игра задана платежной матрицей

Оптимальные смешанные стратегии игроков А и В могут быть найдены в результате решения пары двойственных задач линейного программирования. Для игрока А :

1)

В результате решения задачи 1) находят оптимальный вектор а затем 2) 3)

Решая задачу 3), находят оптимальный вектор 4)

Поскольку задачи (1) и 3) образуют пару симметричных двойственных задач линейного программирования, нет необходимости решать обе задачи. Получив решение одной из них, достаточно воспользоваться соответствием между переменными в канонических записях задач

И из строки целевой функции последней симплекс-таблицы, содержащей компоненты оптимального вектора, выписать значение компонент оптимального вектора двойственной задачи.