Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Механика (лекции).doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
1.45 Mб
Скачать

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ЗДРАВООХРАНЕНИЮ

И СОЦИАЛЬНОМУ РАЗВИТИЮ

САНКТ-ПЕТЕРБУРГСКАЯ ГОСУДАРСТВЕННАЯ

ХИМИКО-ФАРМАЦЕВТИЧЕСКАЯ АКАДЕМИЯ

Кафедра физики

МЕХАНИКА

Текст лекций

САНКТ-ПЕТЕРБУРГ

2006

УДК 531.2.211.261

М55

Механика: Текст лекций/Сост. А.М.Скворцов, И.В.Павлушков, Е.Д.Эйдельман –СПб.: Изда-во СПХФА, 2006. – 28 с.

ISBN 5-8085-0094-Х

Изложен курс лекций в соответствии с учебной программой по физике по разделу «Механика». Приведены контрольные вопросы по основным разделам курса. Предназначены для студентов технологического и фармацевтического факультета.

Рекомендовано методической комиссией

фармацевтического факультета СПХФА

Под общей редакцией

докт. физ.-мат. наук, проф. Е.Д.Эйдельмана

ISBN 5-8085-0094-Х

Санкт-Петербургская государственная

химико-фармацевтическая академия, 2006

1. Сила

Основу механики составляет второй закон Ньютона. При математической записи закона справа пишут причину, а слева — следствие. Причиной является сила, а следствием сил — ускорение. Поэтому второй закон записывается так:

(1.1)

Ускорение тела пропорционально результирующей силе, действующей на тело, и обратно пропорционально массе тела. Направлено ускорение по направлению результирующей силы. Результирующая сила равна векторной сумме всех сил, действующих на тело: .

Реальные силы характеризуют меру взаимодействия двух тел. В дальнейшем мы будем рассматривать несколько видов взаимодействий — гравитационное, электрическое, молекулярное. Каждому виду взаимодействий соответствует своя сила. Если взаимодействий нет, то нет и сил. Поэтому, прежде всего необходимо выяснить, какие тела взаимодействуют друг с другом.

Сила гравитации

Тело брошено и летит над Землей (рис. 1.1). Имеется только

Рис. 1.1. Силы, действующие на брошенный камень (а), ускорение камня (б) и его скорость (в)

взаимодействие тела с Землей, которое характеризуется гравитационной силой притяжения (тяготения). По закону всемирного тяготения гравитационная сила направлена к центру Земли и равна

, (1.2)

где М - масса Земли, т — масса тела, r — расстояние от центра Земли до тела, γ — гравитационная постоянная. Других взаимодействий нет, поэтому нет и других сил.

Чтобы найти ускорение камня, гравитационную силу из формулы 1.2 подставляют в формулу 1.1 второго закона Ньютона. Очевидно, ускорение камня всегда направлено вниз (рис. 1,1,б). В то же время скорость летящего камня меняется и в каждой точке траектории направлена по касательной к этой траектории (рис. 1.1, в).

Второй закон Ньютона связывает векторные величины — ускорение а и результирующую силу . Любой вектор задается величиной (модулем) и направлением. Можно задать вектор тремя проекциями на координатные оси, то есть тремя числами. При этом выбор осей определяется удобством. На рис. 1.1 ось х можно направить вниз. Тогда проекции ускорения будут равны ах, 0, 0. Если же ось х направить вверх, то проекции ускорения станут равны -ах,0,0. В дальнейшем мы будем выбирать направление оси х так, чтобы оно совпадало по направлению с ускорением и для простоты будем писать не величину ах, а просто а. Итак, ускорение, создаваемое гравитационной силой, равно

(1.3)

Для тел, находящихся вблизи поверхности Земли, r R (радиус Земли R = 6400 км), поэтому

м/с2 (1.4)

Следовательно, в вертикальном направлении брошенное тело движется равноускоренно.

Из формулы 1.3 следует, что ускорение свободного падения не зависит от массы летящего (падающего) тела и определяется только массой планеты М и удаленностью тела от центра планеты r. Чем дальше от центра планеты находится тело, тем меньше ускорение свободного падения.

По формуле 1.4 можно рассчитать ускорение, с которым падают тела на других планетах. Например, для Луны RлR/4, и, соответственно,  2 м/с2.

Когда в 1798 г. английский физик Генри Кавендиш экспериментально определил величину гравитационной постоянной γ6,67·10-11 H·м2/кг2, то говорили, что он «взвесил Землю». Действительно, зная гравитационную постоянную и радиус Земли, из формулы 1.4 находим М=9,8·(6,4·106)2/6,67· 10-116,02·1024 кг.

Отметим, что формула 1.2 справедлива только для тел шаро­образной формы и для «точечных тел», размеры которых гораздо меньше расстояния между ними.

Если тела неправильной формы и находятся близко друг к дру­гу, то сила гравитационного взаимодействия будет зависеть от взаимной ориентации этих тел.