Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Gl_2.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
2.84 Mб
Скачать

2.3. Принцип измерения

В основе измерения лежит принцип измерения - физическое явление или эффект, положенный в основу измерений искомой физической величины тем или иным типом средств измерений.

При измерении одной и той же физической величины могут быть использованы совершенно разные принципы измерения, выбор которых, с одной стороны, диктуется условиями проведения измерений, а с другой, определяет погрешность измерения физической величины.

В качестве примера рассмотрим некоторые наиболее распространенные принципы измерения температуры. Температура является исключительно важной физической величиной, характеризующей тепловое (энергетическое) состояние объекта. С температурными измерениями приходится сталкиваться и в быту, и в исследовательских работах, и на стадии проектирования, и на стадии производства. В настоящее время диапазон измеряемых температур простирается от -237 0С до 108 0С. Естественно, что для измерения температур во всех мыслимых случаях используются различные принципы измерений в зависимости от задачи измерения и требований к точности измерений.

1. Термомеханический эффект, который заключается в том, что твердые, жидкие и газообразные тела при изменении температуры испытывают увеличение или уменьшение объема. Большинство тел вне зависимости от из агрегатного состояния при нагревании расширяются, т.е. их объемы увеличиваются. Этот эффект положен в основу конструкции твердотельных, жидкостных и газовых термометров.

В частности, в жидкостных стеклянных термометрах для измерения температуры используется тепловое расширение специальной термометрической жидкости, несмачивающей (ртуть) или смачивающей (спирт) стекло. Термометрическая жидкость заключена в тонкостенный стеклянный резервуар, соединенный с капилляром, с которым связана температурная шкала. Вследствие различия теплового расширения жидкости и стеклянного резервуара при изменении температуры изменяется длина столбика жидкости, находящейся в капилляре.

2. Эффект (эффект Зеебека), который открыл в 1821 году немецкий физик Зеебек (T. Seebeck), заключается в том, что если два проводника из разных металлических материалов (А и В) соединены концами в замкнутый контур (рис.2.2) и места соединений находятся при разных температурах t1 и t2, то в контуре возникает электрический ток. Оба проводника (А и В), называемые термоэлектродами, образуют термопару.

Рис. 2.2. Схема проявления эффекта Зеебека

. На рис. 2.3 показана схема включения термоэлектрического термометра (термопары) в измерительную цепь. Электродвижущая сила (термо-ЭДС), возникающая в измерительном контуре будет пропорциональна разности температур t=t2-t1 "горячего спая" (t1) и "холодного спая" (t2). Материалы термоэлектродов подбирают таким образом, чтобы зависимость термо-ЭДС от разности температур была близка к линейной.

Если "холодный" спай термопары помещен в среду с постоянной температурой t2 (обычно 0 0С), то термо-ЭДС, развиваемая термопарой, будет мерой температуры t1 второго ("горячего") спая. Кстати, из рис.2.3 следует, что зона, в которой измеряют температуру с помощью термопары, может быть удалена от

Р ис. 2.3. Схема включения термопары. 1 – проводники, соединяющие концы термоэлектродов А и В с регистрирующим прибором 2.

регистрирующего прибора (2) в принципе на любое расстояние, что исключено при использовании термометров, основанных на термомеханическом эффекте.

3. Термоэлектрический эффект заключается в том, что при изменении температуры изменяется электрическое сопротивление металлов, электролитов и полупроводников. Таким образом, если известна температурная зависимость электрического сопротивления, то, измерив электросопротивление, можно определить температуру. Термометры, в основе которых лежит термоэлектрический эффект, называют термометрами сопротивления. Они отличаются, прежде всего, очень высокой точностью (погрешность измерения температуры может не превышать 0,001 К). Материалом термометров сопротивления могут быть металлы (платина, медь, никель) или полупроводники в зависимости от диапазона измеряемых температур.

4. Каждое тело испускает в окружающее пространство электромагнитные волны различной длины. В соответствии с законами излучения некоторые параметры излучения (спектральная плотность излучения, энергетическая яркость и т.д.) зависят от температуры излучателя. Таким образом, если известны зависимости параметров излучения от температуры, то измерив эти параметры, можно определить температуру излучателя. Измерения температуры, в основе которых лежит регистрация электромагнитных волн объекта, называются пирометрией, а приборы – пирометрами.

В табл.2.1 приведены данные о пределах измерений температур разными

средствами измерений, основанных на описанных выше эффектах, и точности измерений, достижимой в лабораторных условиях. В таблице указаны некоторые метрологические характеристики групп средств измерений, а не конкретных приборов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]