
- •Основы системного проектирования
- •1. Понятие проектирования
- •2. Структура проектирования
- •2.1. Стадии проектирования
- •2.2. Структура управления процессом проектирования
- •3. Методология проектирования
- •3.1. Принципы системного проектирования
- •3.2. Законы проектирования
- •3.3. Методы проектирования
- •3.3.1. Эвристические методы
- •3.3.1.1. Результаты творческой деятельности
- •3.3.1.2. Психологические факторы творческой деятельности
- •3.3.1.3. Метод итераций (последовательного приближения)
- •3.3.1.4. Метод декомпозиции
- •3.3.1.5. Метод контрольных вопросов
- •3.3.1.6. Метод мозговой атаки
- •3.3.1.7. Теория решения изобретательских задач (триз)
- •3.3.1.8. Метод морфологического анализа
- •3.3.1.9. Функционально-стоимостной анализ
- •3.3.1.10. Методы конструирования
- •3.3.2. Экспериментальные методы
- •3.3.2.1. Цели и виды экспериментальных методов
- •3.3.2.2. Планирование эксперимента и обработка экспериментальных данных
- •3.3.2.3. Машинный эксперимент
- •3.3.2.4. Мысленный эксперимент
- •3.3.3. Формализованные методы
- •3.3.4. Методы принятия решений
- •3.3.4.1. Задачи оптимального проектирования
- •3.3.4.2. Однокритериальные задачи
- •3.3.4.3. Задачи многокритериальной оптимизации
- •3.3.4.4. Принятие решений в условиях неопределенности
- •4. Объекты проектирования
- •4.1. Назначение и характеристики разрабатываемых объектов
- •4.2. Виды технических систем
- •4.3. Модели разрабатываемых объектов
- •4.3.1. Требования к моделям
- •4.3.2. Виды моделей
- •4.4. Параметры разрабатываемых объектов
- •4.5. Требования, предъявляемые к проектируемым объектам
- •4.5.1. Экономические требования
- •4.5.1.1. Требования производителя
- •4.5.1.2. Требования потребителя
- •4.5.2. Проектные и производственные требования
- •4.5.2.1. Стандартизация, унификация, преемственность
- •4.5.2.2. Технологичность
- •4.5.2.3. Транспортабельность
- •4.5.2.4. Сохраняемость
- •4.5.3. Эксплуатационные требования
- •4.5.3.1. Функциональные требования
- •4.5.3.2. Надежность
- •4.5.3.3. Эргономичность
- •4.5.3.4. Безопасность
- •4.5.3.5. Экологичность
- •4.5.3.6. Эстетичность
- •4.5.3.7. Утилизация
- •5. Управление проектированием
- •5.1. Техническое задание
- •5.1.1. Начальные сведения о задаче
- •5.1.2. Содержание технического задания
- •5.1.3. Составление технического задания
- •5.1.3.1. Анализ исходного задания
- •5.1.3.2. Составление списка требований
- •5.1.3.3. Анализ и формализация списка требований
- •5.1.4. Форма представления технического задания
- •5.2. Синтез принципа действия
- •5.2.1. Составление функциональной структуры
- •5.2.2. Подбор и состыковка физических эффектов
- •5.2.2.1. Понятие физического эффекта
- •5.2.2.2. Составление функционально-физической схемы
- •5.2.2.3. Анализ и развитие схемы
- •5.3. Структурный синтез
- •5.4. Параметрический синтез
- •5.5. Циклы итерации проектирования
- •5.5.1. Структура сложного процесса проектирования
- •5.5.2. Разработка сложных объектов
- •5.5.3. Действия по завершении цикла итерации
- •Литература
- •Оглавление
5.2.2.2. Составление функционально-физической схемы
Имея функциональную схему, переходят к составлению функционально-физической схемы или, при необходимости детального физического анализа, — к физической.
Отыскание для каждого элементарного действия соответствующего физического эффекта и их состыковка — непростая задача. На этапе синтеза принципа действия еще точно неизвестно, что является носителем потребной функции, какой энергией обладает, насколько эффективно будет решение.
В ТЗ обычно присутствуют указания на вид объекта воздействия (Н2, рис.17б) и выполняемую функцию (Ф). Из анализа физической сущности этой функции можно установить энергетическое состояние (Э2) объекта воздействия. Например, из задания «устройство для перемещения груза» следует, что объект воздействия — условно твердые тела (кирпичи, бочки с водой, мешки с песком и т.п.), которым нужно сообщить кинетическую энергию.
Сведения по виду проектируемого объекта (Н1) и его энергетическому состоянию могут либо отсутствовать (следовательно, могут быть любыми), либо определяться функцией источника действия (Фи), либо выбираться с учетом дополнительных требований ТЗ.
Наиболее часто поиск физической схемы ведется эвристическими методами.
В автоматизированных системах широко используется метод синтеза, который основан на поиске в базе данных пар сопряженных физических эффектов и построения из них цепочек так, чтобы удовлетворить заданному выходному и возможному входному воздействиям. Такой метод подобен решению задачи с краевыми граничными условиями.
5.2.2.3. Анализ и развитие схемы
Анализ требований ТЗ с целью выявления явных или скрытых физических условий и ограничений уменьшает вариантность, но делает задачу целенаправленной. Основными такими требованиями являются:
доступность источника энергии. Исследуется место эксплуатации разрабатываемого объекта и выясняется, какие источники энергии там имеются или какую энергию можно подвести;
мощность источника энергии. Она должна обеспечить функционирование объекта. Мощность оценивают из закона сохранения энергии, т.е. подводимая энергия должна быть не меньше необходимой для работы объекта. И «производительность» каждого физического эффекта в цепочке должна соответствовать этой мощности. Аналогично проверяют на способность развивать требуемое усилие;
промышленная реализация: возможность получения необходимого количества требуемых материалов и последующей их обработки;
стоимость используемой энергии, безопасность, экологичность и другие показатели качества.
Оценка принципа действия по количеству используемых эффектов не всегда верна. Так, работа лампы накаливания основана на двух физических эффектах, а лампы дневного света — порядка 5, хотя последняя применяется все чаще. Однако замечено, что удачные принципы действия отличает следующее:
совмещение носителей энергии, т.е. использование одного и того же объекта в нескольких физических эффектах (например, в лампе нить накаливания — проводник и источник света);
минимальное число преобразований одних видов энергии в другие, т.е. выполнение объекта однородными;
совмещение функций в физическом эффекте (например, лампа-обогреватель — нить светит и греет).
При разработке объекта сначала подбирают принцип действия для главной функции, потом — для выявленных вспомогательных (тех, которые создают условия выполнения главной функции) и т.д. Далее, предложенные отдельные принципы действия состыковывают и совершенствуют (например, за счет совмещения функций и носителей).
Создание оригинальной как функциональной, так и физической схемы служит признаком патентоспособности разрабатываемого объекта.
В процессе проектирования не всегда проходят этап синтеза принципа действия (особенно при проектировании по аналогии или при улучшении прежнего объекта, в рамках заданного принципа). Однако анализ принципа позволяет установить резервы развития использующей его объекта и пути его совершенствования, проверить корректность модели функционирования. Физическая постановка проектной задачи также позволяет получить дополнительные сведения:
знание физического закона конкретизирует условия реализации — уточняется вид и характер связей, сопутствующие явления, возможные последствия. Например, при нагреве твердого тела происходит не только тепловое излучение, но и изменение его размеров и сопротивления, а при перегреве — оно может и расплавиться;
математическая формулировка физического закона очерчивает круг основных параметров, характеризующих процесс функционирования, их взаимосвязь и степень влияния на конечный результат;
физический принцип и его математическая формулировка составляют основу построения модели функционирования проектируемого объекта.
Выявление принципа действия и поиск возможных его вариантов — первое, с чего начинается конструирование, даже если берутся готовые изделия: анализ их особенностей позволит выбрать лучший вариант или подтвердить традиционный выбор.
Подводя итоги, перечислим основные этапы синтеза принципа действия:
1. Разработка функциональной структуры.
1.1. Выбор на основе ТЗ исходной функциональной структуры, уточнение видов объектов и связей между ними.
1.2. Детализация исходной структуры, выделение элементарных действий.
1.3. Развитие структуры, выявление дополнительных функций.
2. Разработка функционально-физической структуры.
2.1. Замена элементов функциональной структуры на физические аналоги — энергию и ее носители.
2.2. Подбор физических эффектов.
2.3. Построение цепочек физических эффектов.
2.4. Отбор предпочтительных вариантов.
3. Проверка функционально-физических схем на соответствие требованиям ТЗ.
4. Разработка принципов действия подсистем и состыковка их.