
- •Основы системного проектирования
- •1. Понятие проектирования
- •2. Структура проектирования
- •2.1. Стадии проектирования
- •2.2. Структура управления процессом проектирования
- •3. Методология проектирования
- •3.1. Принципы системного проектирования
- •3.2. Законы проектирования
- •3.3. Методы проектирования
- •3.3.1. Эвристические методы
- •3.3.1.1. Результаты творческой деятельности
- •3.3.1.2. Психологические факторы творческой деятельности
- •3.3.1.3. Метод итераций (последовательного приближения)
- •3.3.1.4. Метод декомпозиции
- •3.3.1.5. Метод контрольных вопросов
- •3.3.1.6. Метод мозговой атаки
- •3.3.1.7. Теория решения изобретательских задач (триз)
- •3.3.1.8. Метод морфологического анализа
- •3.3.1.9. Функционально-стоимостной анализ
- •3.3.1.10. Методы конструирования
- •3.3.2. Экспериментальные методы
- •3.3.2.1. Цели и виды экспериментальных методов
- •3.3.2.2. Планирование эксперимента и обработка экспериментальных данных
- •3.3.2.3. Машинный эксперимент
- •3.3.2.4. Мысленный эксперимент
- •3.3.3. Формализованные методы
- •3.3.4. Методы принятия решений
- •3.3.4.1. Задачи оптимального проектирования
- •3.3.4.2. Однокритериальные задачи
- •3.3.4.3. Задачи многокритериальной оптимизации
- •3.3.4.4. Принятие решений в условиях неопределенности
- •4. Объекты проектирования
- •4.1. Назначение и характеристики разрабатываемых объектов
- •4.2. Виды технических систем
- •4.3. Модели разрабатываемых объектов
- •4.3.1. Требования к моделям
- •4.3.2. Виды моделей
- •4.4. Параметры разрабатываемых объектов
- •4.5. Требования, предъявляемые к проектируемым объектам
- •4.5.1. Экономические требования
- •4.5.1.1. Требования производителя
- •4.5.1.2. Требования потребителя
- •4.5.2. Проектные и производственные требования
- •4.5.2.1. Стандартизация, унификация, преемственность
- •4.5.2.2. Технологичность
- •4.5.2.3. Транспортабельность
- •4.5.2.4. Сохраняемость
- •4.5.3. Эксплуатационные требования
- •4.5.3.1. Функциональные требования
- •4.5.3.2. Надежность
- •4.5.3.3. Эргономичность
- •4.5.3.4. Безопасность
- •4.5.3.5. Экологичность
- •4.5.3.6. Эстетичность
- •4.5.3.7. Утилизация
- •5. Управление проектированием
- •5.1. Техническое задание
- •5.1.1. Начальные сведения о задаче
- •5.1.2. Содержание технического задания
- •5.1.3. Составление технического задания
- •5.1.3.1. Анализ исходного задания
- •5.1.3.2. Составление списка требований
- •5.1.3.3. Анализ и формализация списка требований
- •5.1.4. Форма представления технического задания
- •5.2. Синтез принципа действия
- •5.2.1. Составление функциональной структуры
- •5.2.2. Подбор и состыковка физических эффектов
- •5.2.2.1. Понятие физического эффекта
- •5.2.2.2. Составление функционально-физической схемы
- •5.2.2.3. Анализ и развитие схемы
- •5.3. Структурный синтез
- •5.4. Параметрический синтез
- •5.5. Циклы итерации проектирования
- •5.5.1. Структура сложного процесса проектирования
- •5.5.2. Разработка сложных объектов
- •5.5.3. Действия по завершении цикла итерации
- •Литература
- •Оглавление
3.3.4. Методы принятия решений
3.3.4.1. Задачи оптимального проектирования
В процессе решения задачи всегда появляется несколько вариантов. Это происходит и случайно, в силу неоднозначности и неопределенности процесса решения, и целенаправленно, как основа поиска лучшего результата. Но задача, и особенно техническая, считается решенной тогда, когда будет сделан выбор окончательного, единственного варианта. Только такая деятельность считается продуктивной.
Рекомендуемые к исполнению решения должны быть:
обоснованными,
своевременными,
директивными (обязательными к исполнению),
правомочными,
непротиворечивыми (согласованными с другими, в том числе и ранее принятыми).
Выбираемое решение всегда взаимосвязано с конкретной личностью (индивидуальное решение) или группой людей (коллективное решение). Человек, который
- имеет право выбирать окончательное решение,
- несет за него ответственность,
- заинтересован в решении проблемы,
называется лицом, принимающим решение (ЛИР). Принятие решения в значительной степени носит социальный характер, поскольку нацелено на удовлетворение общественных потребностей.
Выбор возможен одним из следующих способов:
случайным образом (способом необъяснимым и независящим от условий задачи),
волевым образом (выбор не обосновывается и индивидуален, определяется чертами характера ЛИР),
критериальным образом (выбор имеет обоснование, доступное пониманию другими людьми).
В проектировании предпочтителен критериальный выбор: разработчик должен уметь аргументировано доказать верность и эффективность полученных результатов.
Ранее критериальный подход больше базировался на опыте (экспертных оценках), на обосновывающих верность рассуждениях и умозаключениях (логических построениях). В последнее время к выводам стали предъявлять требования четкости и точности. Появилась новая наука, теория исследования операций, изучающая проблемы, связанные с принятием решений (см. работы Е.С. Вентцель). А задачи, решаемые на основе ее принципов, стали называть задачами оптимального проектирования.
Как уже отмечалось ранее, реальный объект характеризуется огромным числом параметров, и для упрощения его описания выделяют принцип действия, структурный и параметрический уровни. Аналогично, задачи оптимального проектирования подразделяют на задачи выбора оптимального принципа действия, структурной и параметрической оптимизации.
Разработка методов выбора оптимального принципа действия пока относится к задачам перспективных исследований: еще не известны такие методы и критерии, которые бы позволили на основе ограниченного числа данных, которое соответствует этому уровню описания объекта, дать полную и точную картину его поведения в реальных условиях и позволить выбрать предпочтительный принцип действия.
Решение задачи структурной оптимизации более реально. В ее основе могут лежать представление структуры в виде графов, сравнительный анализ структур на основе ограниченного числа структурных параметров, объединение исследуемых структур в одну, обобщенную. Но неполнота учитываемых данных не позволяет однозначно указать на лучший вариант, и выводы носят рекомендательно-оценочный характер.
Наиболее разработаны математические методы параметрической оптимизации, т.е. методы поиска оптимальных параметров объекта в рамках заданных его принципа действия и структуры.
Основой для поиска оптимального варианта служат правила (критерии) оптимальности, а мерой предпочтения — показатели качества. Показатели могут иметь либо количественную оценку (формализованные показатели), либо качественную характеристику (неформализованные показатели). В задачах параметрической оптимизации используют формализованные показатели, которые также называют критериями оптимизации (критериями эффективности объекта). Но стоит помнить, что назначение количества и типов критериев осуществляется человеком, что придает им эвристический характер. А с другой стороны, критерии определяют конечный вид проектируемого объекта, и, следовательно, случайный их выбор ведет к случайным и неэффективным результатам (хотя эти результаты могут быть получены на основе многократно проверенных и общепринятых методик).
Для удобства и однозначности восприятия критерии Кi (где i=1,..., m и m — число критериев) нормируют, т.е. обычно приводят к следующему виду:
Кi ≥ 0;
критерии Кi убывают с улучшением решения, с ростом качества проектируемого объекта (встречается и обратное требование);
предпочтительно критерии приводить к безразмерному виду;
наилучшее значение критерия равно нулю. Решения, у которого все критерии нулевые (Кi = 0), соответствует ИКР.
Диапазон изменения параметров {х} объекта всегда ограничен их физическим смыслом, материальными ресурсами, условиями задачи (например, положительность величин геометрических размеров, изменение КПД от 0 до 1, стандартные значения шага резьбы и т.п.). Поэтому реальные варианты решений Pj (где j=1,..., n и n — число возможных решений) занимают некоторую конечную допустимую область в пространстве их параметров Мд(х). Однако огромное число параметров, которое характеризует любой объект, делает сложной для восприятия и ненаглядной работу в таком пространстве. Чаще анализ и принятие решений ведут в пространстве критериев Мд(к), являющемся частным случаем пространства параметров.
На рис. 7а показан пример множества из пяти допустимых решений Мд(к)= { PA, PB, PC, PD, Pe }= {Pj} в пространстве двух критериев {К1 , К2} (вектора решений, за исключением PB , на рисунке не показаны). Каждому решению Pj соответствует свой набор критериев, т.е. Pj={Кij}. Множество допустимых решений может быть дискретным (рис. 7а), либо непрерывным (рис. 7б).
Рис.7. Множество допустимых решений Мд (к) в пространстве критериев: а — дискретное, б — непрерывное
Характеризуя объект, сложно выбрать такой один критерий, который бы обеспечил всю полноту требований. А стремление к всеобъемлющему решению и назначение большого числа критериев сильно усложняет задачу. Поэтому в разных задачах количество критериев может быть различным. Задачи однокритериальной оптимизации называют скалярными, а многокритериальной — векторной оптимизации. Последнее название объясняется тем, что решение можно изобразить как бы вектором P в пространстве критериев.
Распространен принцип сведения решения задачи оптимального проектирования объекта-системы к оптимизации его подсистем. Однако наличие нелинейных связей между подсистемами не гарантирует оптимальности всей системы.
Рассмотрим основные методы принятия решений в задачах параметрической оптимизации.