
- •Основы системного проектирования
- •1. Понятие проектирования
- •2. Структура проектирования
- •2.1. Стадии проектирования
- •2.2. Структура управления процессом проектирования
- •3. Методология проектирования
- •3.1. Принципы системного проектирования
- •3.2. Законы проектирования
- •3.3. Методы проектирования
- •3.3.1. Эвристические методы
- •3.3.1.1. Результаты творческой деятельности
- •3.3.1.2. Психологические факторы творческой деятельности
- •3.3.1.3. Метод итераций (последовательного приближения)
- •3.3.1.4. Метод декомпозиции
- •3.3.1.5. Метод контрольных вопросов
- •3.3.1.6. Метод мозговой атаки
- •3.3.1.7. Теория решения изобретательских задач (триз)
- •3.3.1.8. Метод морфологического анализа
- •3.3.1.9. Функционально-стоимостной анализ
- •3.3.1.10. Методы конструирования
- •3.3.2. Экспериментальные методы
- •3.3.2.1. Цели и виды экспериментальных методов
- •3.3.2.2. Планирование эксперимента и обработка экспериментальных данных
- •3.3.2.3. Машинный эксперимент
- •3.3.2.4. Мысленный эксперимент
- •3.3.3. Формализованные методы
- •3.3.4. Методы принятия решений
- •3.3.4.1. Задачи оптимального проектирования
- •3.3.4.2. Однокритериальные задачи
- •3.3.4.3. Задачи многокритериальной оптимизации
- •3.3.4.4. Принятие решений в условиях неопределенности
- •4. Объекты проектирования
- •4.1. Назначение и характеристики разрабатываемых объектов
- •4.2. Виды технических систем
- •4.3. Модели разрабатываемых объектов
- •4.3.1. Требования к моделям
- •4.3.2. Виды моделей
- •4.4. Параметры разрабатываемых объектов
- •4.5. Требования, предъявляемые к проектируемым объектам
- •4.5.1. Экономические требования
- •4.5.1.1. Требования производителя
- •4.5.1.2. Требования потребителя
- •4.5.2. Проектные и производственные требования
- •4.5.2.1. Стандартизация, унификация, преемственность
- •4.5.2.2. Технологичность
- •4.5.2.3. Транспортабельность
- •4.5.2.4. Сохраняемость
- •4.5.3. Эксплуатационные требования
- •4.5.3.1. Функциональные требования
- •4.5.3.2. Надежность
- •4.5.3.3. Эргономичность
- •4.5.3.4. Безопасность
- •4.5.3.5. Экологичность
- •4.5.3.6. Эстетичность
- •4.5.3.7. Утилизация
- •5. Управление проектированием
- •5.1. Техническое задание
- •5.1.1. Начальные сведения о задаче
- •5.1.2. Содержание технического задания
- •5.1.3. Составление технического задания
- •5.1.3.1. Анализ исходного задания
- •5.1.3.2. Составление списка требований
- •5.1.3.3. Анализ и формализация списка требований
- •5.1.4. Форма представления технического задания
- •5.2. Синтез принципа действия
- •5.2.1. Составление функциональной структуры
- •5.2.2. Подбор и состыковка физических эффектов
- •5.2.2.1. Понятие физического эффекта
- •5.2.2.2. Составление функционально-физической схемы
- •5.2.2.3. Анализ и развитие схемы
- •5.3. Структурный синтез
- •5.4. Параметрический синтез
- •5.5. Циклы итерации проектирования
- •5.5.1. Структура сложного процесса проектирования
- •5.5.2. Разработка сложных объектов
- •5.5.3. Действия по завершении цикла итерации
- •Литература
- •Оглавление
3.3.1.10. Методы конструирования
Приведенные выше эвристические методы позволяют найти оригинальные или неожиданные идею, техническое решение, образ объекта. Однако на практике такое требуется примерно в 10% решаемых задач, когда важны существенные прорыв в новое или отрыв от конкурентов. Чаще необходимо усовершенствовать уже известное решение. Это объясняется тем, что инженерное решение всегда должно увязываться с его практической реализуемостью, с возможностью «воплощения в металле», т.е. быть, прежде всего, технологичным, экономичным и не требовать длительных по времени работ. Известна следующая поговорка практиков: «Кончай дедукцию, давай продукцию». А потому новое решение обычно получают путем постепенного внесения малых изменений в прежнюю, уже существующую конструкцию, используя разные методы и подходы, условно называемые методами конструирования.
К методам конструирования относятся методы на основе преемственности, унификации, агрегатирования, модификации, стандартизации, инверсии и другие /Орлов П.И./. По своему характеру эти методы являются эвристическими.
Конструктивная преемственность — это постепенное совершенствование конструкции путем введения в нее отдельных новых или дополнительных деталей, узлов, агрегатов взамен морально устаревших и неудовлетворяющих современным требованиям, либо с целью изменения прежних характеристик изделия. Метод основан на совершенствовании уже существующей конструкции. Он включает следующие этапы:
составление списка новых требований к конструкции и его анализ,
выявление в конструкции частей, препятствующих удовлетворению этих требований,
поиск путей по усовершенствованию данных частей или поиск вариантов для их замены.
Метод широко использует основные эвристические методы. Так, для поиска слабых мест в конструкции эффективно применять метод иерархической декомпозиции, расчленяя изделие на как можно более простые или элементарные части и отыскивая те, с которыми связана неудовлетворительная работа всего изделия. Чем элементарнее будет заменяемая часть, тем проще и быстрее будет создана более совершенная конструкция: меньше времени уйдет на разработку, не понадобится существенно переналаживать технологический процесс. При этом необходимо выполнять проверку на состыковку новой части с остальными частями изделия (по геометрическим размерам и формам сопрягаемых поверхностей, усилиям взаимодействия и передаваемой мощности и другим входным и выходным параметрам) и обращать внимание на то, чтобы согласование размеров, создание специальных условий и т.д. не усложняло технологию изготовления и сборки соседних взаимодействующих частей.
Метод базового агрегата — выпуск разнообразных изделий, объединенных наличием у них общей, базовой части (агрегата). Обычно таким агрегатом является наиболее сложная часть будущих изделий. Разработка базового агрегата ведется с таким учетом, чтобы, присоединяя к нему дополнительные части, можно было достаточно просто и быстро создавать изделия с измененными внешним видом, числом выполняемых функций, характеристиками. Метод базируется на унификации форм и параметров состыковочных поверхностей, согласованности величин мощности и основных входных и выходных параметров.
Метод агрегатирования — создание изделия путем сочленения унифицированных агрегатов, устанавливаемых в различном сочетании на общем основании. Для удобства сочленения комбинируемые агрегаты обладают полной взаимозаменяемостью по эксплуатационным показателям и присоединительным размерам.
Метод модификации — переделка изделия с целью его приспособления к новым требования, условиям работы, технологическому процессу (способу изготовления и сборки) без изменения в нем наиболее дорогих и ответственных частей. Часто основывается на замене материалов или изменении их механических или химических свойств, либо замене одних частей на другие.
Метод стандартизации — создание конструкции и ее последующее совершенствование на основе применения стандартных деталей и узлов, элементов со стандартными параметрами. Это позволяет, несмотря на сложность стандартных элементов, использовать уже разработанную техническую документацию и, возможно, покупные части (например, асинхронный электродвигатель, подшипник качения), применять типовые технологические операции и оборудование, упрощает обслуживание и ремонт.
Метод инверсии — создание новой конструкции на основе изменения функций, форм или положения частей существующего изделия. Например, пружину растяжения заменить пружиной сжатия, выпуклую поверхность сделать вогнутой.